IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-11-29 DOI:10.3390/e26121032
David Podgorelec, Damjan Strnad, Ivana Kolingerová, Borut Žalik
{"title":"State-of-the-Art Trends in Data Compression: COMPROMISE Case Study.","authors":"David Podgorelec, Damjan Strnad, Ivana Kolingerová, Borut Žalik","doi":"10.3390/e26121032","DOIUrl":null,"url":null,"abstract":"<p><p>After a boom that coincided with the advent of the internet, digital cameras, digital video and audio storage and playback devices, the research on data compression has rested on its laurels for a quarter of a century. Domain-dependent lossy algorithms of the time, such as JPEG, AVC, MP3 and others, achieved remarkable compression ratios and encoding and decoding speeds with acceptable data quality, which has kept them in common use to this day. However, recent computing paradigms such as cloud computing, edge computing, the Internet of Things (IoT), and digital preservation have gradually posed new challenges, and, as a consequence, development trends in data compression are focusing on concepts that were not previously in the spotlight. In this article, we try to critically evaluate the most prominent of these trends and to explore their parallels, complementarities, and differences. Digital data restoration mimics the human ability to omit memorising information that is satisfactorily retrievable from the context. Feature-based data compression introduces a two-level data representation with higher-level semantic features and with residuals that correct the feature-restored (predicted) data. The integration of the advantages of individual domain-specific data compression methods into a general approach is also challenging. To the best of our knowledge, a method that addresses all these trends does not exist yet. Our methodology, COMPROMISE, has been developed exactly to make as many solutions to these challenges as possible inter-operable. It incorporates features and digital restoration. Furthermore, it is largely domain-independent (general), asymmetric, and universal. The latter refers to the ability to compress data in a common framework in a lossy, lossless, and near-lossless mode. COMPROMISE may also be considered an umbrella that links many existing domain-dependent and independent methods, supports hybrid lossless-lossy techniques, and encourages the development of new data compression algorithms.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726981/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121032","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着互联网、数码相机、数字视频和音频存储及回放设备的出现,数据压缩研究也随之蓬勃发展起来。当时依赖于领域的有损算法,如 JPEG、AVC、MP3 等,在数据质量可接受的情况下实现了出色的压缩比和编码解码速度,这使它们一直被普遍使用至今。然而,云计算、边缘计算、物联网(IoT)和数字保存等最新计算范式逐渐提出了新的挑战,因此,数据压缩的发展趋势正聚焦于以前未曾关注的概念。在本文中,我们试图对其中最突出的趋势进行批判性评估,并探讨它们之间的相似性、互补性和差异性。数字数据还原模仿了人类省略记忆信息的能力,这种能力可以从上下文中令人满意地检索到。基于特征的数据压缩引入了两级数据表示,即高级语义特征和修正特征恢复(预测)数据的残差。将各个特定领域数据压缩方法的优势整合到通用方法中也是一项挑战。据我们所知,目前还没有一种方法能解决所有这些趋势。我们开发 COMPROMISE 方法的目的,正是为了让尽可能多的应对这些挑战的解决方案具有互操作性。它结合了特征和数字复原。此外,它在很大程度上与领域无关(通用)、非对称和通用。后者指的是在通用框架内以有损、无损和近乎无损模式压缩数据的能力。COMPROMISE 也可以被视为一个总括,它将许多现有的与领域相关和独立的方法联系在一起,支持混合的无损压缩技术,并鼓励开发新的数据压缩算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State-of-the-Art Trends in Data Compression: COMPROMISE Case Study.

After a boom that coincided with the advent of the internet, digital cameras, digital video and audio storage and playback devices, the research on data compression has rested on its laurels for a quarter of a century. Domain-dependent lossy algorithms of the time, such as JPEG, AVC, MP3 and others, achieved remarkable compression ratios and encoding and decoding speeds with acceptable data quality, which has kept them in common use to this day. However, recent computing paradigms such as cloud computing, edge computing, the Internet of Things (IoT), and digital preservation have gradually posed new challenges, and, as a consequence, development trends in data compression are focusing on concepts that were not previously in the spotlight. In this article, we try to critically evaluate the most prominent of these trends and to explore their parallels, complementarities, and differences. Digital data restoration mimics the human ability to omit memorising information that is satisfactorily retrievable from the context. Feature-based data compression introduces a two-level data representation with higher-level semantic features and with residuals that correct the feature-restored (predicted) data. The integration of the advantages of individual domain-specific data compression methods into a general approach is also challenging. To the best of our knowledge, a method that addresses all these trends does not exist yet. Our methodology, COMPROMISE, has been developed exactly to make as many solutions to these challenges as possible inter-operable. It incorporates features and digital restoration. Furthermore, it is largely domain-independent (general), asymmetric, and universal. The latter refers to the ability to compress data in a common framework in a lossy, lossless, and near-lossless mode. COMPROMISE may also be considered an umbrella that links many existing domain-dependent and independent methods, supports hybrid lossless-lossy techniques, and encourages the development of new data compression algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Applications of Entropy in Data Analysis and Machine Learning: A Review. Transpiling Quantum Assembly Language Circuits to a Qudit Form. Fundamental Limits of an Irreversible Heat Engine. Ornstein-Uhlenbeck Adaptation as a Mechanism for Learning in Brains and Machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1