Sara E Breitmeyer, Amy M Williams, Matthew D Conlon, Timothy A Wertz, Brian C Heflin, Dustin R Shull, Joseph W Duris
{"title":"宾夕法尼亚州全州河流网络中全氟和多氟烷基物质(PFAS)对水生暴露影响的预测潜力。","authors":"Sara E Breitmeyer, Amy M Williams, Matthew D Conlon, Timothy A Wertz, Brian C Heflin, Dustin R Shull, Joseph W Duris","doi":"10.3390/toxics12120921","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams. Additionally, machine learning techniques were utilized to predict potential PFAS exposure effects in unmonitored stream reaches, considering factors such as land use, climate, and geology. Leveraging a tailored convolutional neural network (CNN), a validation accuracy of 78% was achieved, directly outperforming traditional methods that were also used, such as logistic regression and gradient boosting (accuracies of ~65%). Feature importance analysis highlighted key variables that contributed to the CNN's predictive power. The most influential features highlighted the complex interplay of anthropogenic and environmental factors contributing to PFAS contamination in surface waters. Industrial and urban land cover, rainfall intensity, underlying geology, agricultural factors, and their interactions emerged as key determinants. These findings may help to inform biotic sampling strategies, water quality monitoring efforts, and policy decisions aimed to mitigate the ecological impacts of PFAS in surface waters.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicted Potential for Aquatic Exposure Effects of Per- and Polyfluorinated Alkyl Substances (PFAS) in Pennsylvania's Statewide Network of Streams.\",\"authors\":\"Sara E Breitmeyer, Amy M Williams, Matthew D Conlon, Timothy A Wertz, Brian C Heflin, Dustin R Shull, Joseph W Duris\",\"doi\":\"10.3390/toxics12120921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams. Additionally, machine learning techniques were utilized to predict potential PFAS exposure effects in unmonitored stream reaches, considering factors such as land use, climate, and geology. Leveraging a tailored convolutional neural network (CNN), a validation accuracy of 78% was achieved, directly outperforming traditional methods that were also used, such as logistic regression and gradient boosting (accuracies of ~65%). Feature importance analysis highlighted key variables that contributed to the CNN's predictive power. The most influential features highlighted the complex interplay of anthropogenic and environmental factors contributing to PFAS contamination in surface waters. Industrial and urban land cover, rainfall intensity, underlying geology, agricultural factors, and their interactions emerged as key determinants. These findings may help to inform biotic sampling strategies, water quality monitoring efforts, and policy decisions aimed to mitigate the ecological impacts of PFAS in surface waters.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12120921\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12120921","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Predicted Potential for Aquatic Exposure Effects of Per- and Polyfluorinated Alkyl Substances (PFAS) in Pennsylvania's Statewide Network of Streams.
Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams. Additionally, machine learning techniques were utilized to predict potential PFAS exposure effects in unmonitored stream reaches, considering factors such as land use, climate, and geology. Leveraging a tailored convolutional neural network (CNN), a validation accuracy of 78% was achieved, directly outperforming traditional methods that were also used, such as logistic regression and gradient boosting (accuracies of ~65%). Feature importance analysis highlighted key variables that contributed to the CNN's predictive power. The most influential features highlighted the complex interplay of anthropogenic and environmental factors contributing to PFAS contamination in surface waters. Industrial and urban land cover, rainfall intensity, underlying geology, agricultural factors, and their interactions emerged as key determinants. These findings may help to inform biotic sampling strategies, water quality monitoring efforts, and policy decisions aimed to mitigate the ecological impacts of PFAS in surface waters.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.