使用心脏CT和MRI数据的机器学习模型预测阻塞性冠状动脉疾病的心血管事件。

IF 12.1 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiology Pub Date : 2025-01-01 DOI:10.1148/radiol.233030
Théo Pezel, Solenn Toupin, Valérie Bousson, Kenza Hamzi, Thomas Hovasse, Thierry Lefevre, Bernard Chevalier, Thierry Unterseeh, Francesca Sanguineti, Stéphane Champagne, Hakim Benamer, Antoinette Neylon, Mariama Akodad, Tania Ah-Sing, Lounis Hamzi, Trecy Gonçalves, Antoine Lequipar, Emmanuel Gall, Alexandre Unger, Jean Guillaume Dillinger, Patrick Henry, Olivier Vignaux, Marc Sirol, Philippe Garot, Jérôme Garot
{"title":"使用心脏CT和MRI数据的机器学习模型预测阻塞性冠状动脉疾病的心血管事件。","authors":"Théo Pezel, Solenn Toupin, Valérie Bousson, Kenza Hamzi, Thomas Hovasse, Thierry Lefevre, Bernard Chevalier, Thierry Unterseeh, Francesca Sanguineti, Stéphane Champagne, Hakim Benamer, Antoinette Neylon, Mariama Akodad, Tania Ah-Sing, Lounis Hamzi, Trecy Gonçalves, Antoine Lequipar, Emmanuel Gall, Alexandre Unger, Jean Guillaume Dillinger, Patrick Henry, Olivier Vignaux, Marc Sirol, Philippe Garot, Jérôme Garot","doi":"10.1148/radiol.233030","DOIUrl":null,"url":null,"abstract":"<p><p>Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one ≥50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years ± 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (<i>P</i> value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. © RSNA, 2025 <i>Supplemental material is available for this article.</i></p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 1","pages":"e233030"},"PeriodicalIF":12.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease.\",\"authors\":\"Théo Pezel, Solenn Toupin, Valérie Bousson, Kenza Hamzi, Thomas Hovasse, Thierry Lefevre, Bernard Chevalier, Thierry Unterseeh, Francesca Sanguineti, Stéphane Champagne, Hakim Benamer, Antoinette Neylon, Mariama Akodad, Tania Ah-Sing, Lounis Hamzi, Trecy Gonçalves, Antoine Lequipar, Emmanuel Gall, Alexandre Unger, Jean Guillaume Dillinger, Patrick Henry, Olivier Vignaux, Marc Sirol, Philippe Garot, Jérôme Garot\",\"doi\":\"10.1148/radiol.233030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one ≥50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years ± 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (<i>P</i> value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. © RSNA, 2025 <i>Supplemental material is available for this article.</i></p>\",\"PeriodicalId\":20896,\"journal\":{\"name\":\"Radiology\",\"volume\":\"314 1\",\"pages\":\"e233030\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1148/radiol.233030\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.233030","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景多模态成像对疑似冠状动脉疾病(CAD)的个性化预后分层至关重要。机器学习(ML)方法可以通过结合更广泛的变量来帮助解决这种复杂性。目的探讨利用心脏MRI和冠状动脉CT血管造影(CCTA)数据预测新诊断CAD患者主要不良心血管事件(MACE)的ML模型的性能。材料和方法本回顾性研究纳入了2008年12月至2020年1月期间连续行CCTA的无已知CAD症状患者。梗阻性CAD患者(CCTA上至少有一个≥50%的狭窄)接受应激性心脏MRI进行功能评估。18个临床参数、2个心电图参数、9个CCTA参数和12个心脏MRI参数被评估为ML模型的输入,该模型包括使用最小绝对收缩和选择算子算法的自动特征选择和使用XGBoost算法的模型构建。主要终点是MACE,定义为心血管死亡和非致死性心肌梗死的组合。使用两个独立的数据集进行外部测试。使用接收者工作特征曲线(AUC)下的面积比较ML模型与现有分数和其他方法的性能。结果2210例完成心脏MRI的患者中,2038例(平均年龄70岁±12岁;1091名(53.5%)女性参与者完成随访(中位随访时间为7年[IQR, 6-9年]);281人经历过MACE(13.8%)。ML模型预测MACE的AUC(0.86)高于欧洲心脏病学会评分(0.55)、QRISK3评分(0.60)、Framingham风险评分(0.50)、节段受累评分(0.71)、单独CCTA数据(0.76)或单独心脏MRI数据(0.83)(P值范围,本文可提供补充材料)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease.

Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one ≥50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years ± 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (P value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. © RSNA, 2025 Supplemental material is available for this article.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiology
Radiology 医学-核医学
CiteScore
35.20
自引率
3.00%
发文量
596
审稿时长
3.6 months
期刊介绍: Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies. Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.
期刊最新文献
A Leadership Primer. COVID-19 Infection and Coronary Plaque Progression: An Early Warning of a Potential Public Health Crisis. Advancing Care: Managing Small Late-Recurrence Hepatocellular Carcinoma with Image-guided Therapy. AI-generated Clinical Histories for Radiology Reports: Closing the Information Gap. CT Honeycombing and Traction Bronchiectasis Extent Independently Predict Survival across Fibrotic Interstitial Lung Disease Subtypes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1