能源、芳香和药用植物修复受潜在有毒元素污染的农业土壤的潜力和前景:一项关键的元分析。

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Toxics Pub Date : 2024-12-17 DOI:10.3390/toxics12120914
Evangelia E Golia, Edoardo Barbieri, Sotiria G Papadimou, Dimitrios Alexiadis
{"title":"能源、芳香和药用植物修复受潜在有毒元素污染的农业土壤的潜力和前景:一项关键的元分析。","authors":"Evangelia E Golia, Edoardo Barbieri, Sotiria G Papadimou, Dimitrios Alexiadis","doi":"10.3390/toxics12120914","DOIUrl":null,"url":null,"abstract":"<p><p>A critical meta-analysis of the past decade's investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs' existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As accumulation in different parts of plant species has been investigated using proper indices. Aromatic plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was often used, allowing for the aboveground part to be almost completely free of metallic pollutants. Using plants for remediation was proven to be advantageous within a circular economy model. Such a process is a promising solution, both economically and environmentally, since it provides a useful tool for keeping environmental balance and producing safe goods.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728623/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energy, Aromatic, and Medicinal Plants' Potential and Prospects for the Remediation of Potentially Toxic Element-Contaminated Agricultural Soils: A Critical Meta-Analysis.\",\"authors\":\"Evangelia E Golia, Edoardo Barbieri, Sotiria G Papadimou, Dimitrios Alexiadis\",\"doi\":\"10.3390/toxics12120914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A critical meta-analysis of the past decade's investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs' existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As accumulation in different parts of plant species has been investigated using proper indices. Aromatic plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was often used, allowing for the aboveground part to be almost completely free of metallic pollutants. Using plants for remediation was proven to be advantageous within a circular economy model. Such a process is a promising solution, both economically and environmentally, since it provides a useful tool for keeping environmental balance and producing safe goods.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12120914\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12120914","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对过去十年的调查进行了一项重要的荟萃分析,目的是评估基于植物的土壤修复技术的使用情况。选择潜在有毒元素(PTE)污染的土壤,是因为这些污染物被认为是危险的,具有长期影响。此外,我们还研究了能源、芳香和药用植物,因为它们的高价值产品似乎受到pte存在的影响。采用适当的指标研究了铅(Pb)、Cu、Cd、Zn、Cr、Co、Ni、Hg和As在植物不同部位的积累。芳香植物似乎提供了较高的植物修复产量。毒性水平的增加和多种金属的共存增强了芳香植物的积累能力,甚至是有毒Cd的积累能力。在可作为能源的植物中,观察到拮抗效应,因为Cu和Cd同时存在导致热容量降低。最后,在大多数所研究的植物中,观察到植物稳定技术,即主要在植物的根部积累金属,经常被使用,从而使地上部分几乎完全不含金属污染物。在循环经济模式下,利用植物进行修复已被证明是有利的。这一过程在经济上和环境上都是一个很有前途的解决方案,因为它为保持环境平衡和生产安全产品提供了有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy, Aromatic, and Medicinal Plants' Potential and Prospects for the Remediation of Potentially Toxic Element-Contaminated Agricultural Soils: A Critical Meta-Analysis.

A critical meta-analysis of the past decade's investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs' existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As accumulation in different parts of plant species has been investigated using proper indices. Aromatic plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was often used, allowing for the aboveground part to be almost completely free of metallic pollutants. Using plants for remediation was proven to be advantageous within a circular economy model. Such a process is a promising solution, both economically and environmentally, since it provides a useful tool for keeping environmental balance and producing safe goods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
期刊最新文献
RETRACTED: Di Paola et al. Environmental Risk Assessment of Dexamethasone Sodium Phosphate and Tocilizumab Mixture in Zebrafish Early Life Stage (Danio rerio). Toxics 2022, 10, 279. RETRACTED: Paola et al. Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin. Toxics 2022, 10, 388. RETRACTED: Di Paola et al. Combined Effects of Potassium Perchlorate and a Neonicotinoid on Zebrafish Larvae (Danio rerio). Toxics 2022, 10, 203. Human Activity as a Growing Threat to Marine Ecosystems: Plastic and Temperature Effects on the Sponge Sarcotragus spinosulus. Subchronic Exposure to Low-Dose Chlorfenapyr and Emamectin Benzoate Disrupts Kidney Metabolism in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1