IF 11.4 1区 医学 Q1 ONCOLOGY Journal of Experimental & Clinical Cancer Research Pub Date : 2025-01-14 DOI:10.1186/s13046-025-03272-3
Hong Wang, Chunli Cui, Weiyi Li, Hui Wu, Jianjun Sha, Jiahua Pan, Wei Xue
{"title":"AGD1/USP10/METTL13 complexes enhance cancer stem cells proliferation and diminish the therapeutic effect of docetaxel via CD44 m6A modification in castration resistant prostate cancer.","authors":"Hong Wang, Chunli Cui, Weiyi Li, Hui Wu, Jianjun Sha, Jiahua Pan, Wei Xue","doi":"10.1186/s13046-025-03272-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes. This study demonstrated that AGD1, derived from prostate cancer stem cells (PCSCs), enhanced the stemness of prostate cancer cells and reduced the therapeutic effect of docetaxel in CRPC.</p><p><strong>Methods: </strong>Quantitative real-time PCR (qPCR) was employed to determine the expression levels of AGD1 and METTL13 mRNAs in PCSCs and exosomes. Protein expression levels were examined using western blots and dot blots. The potential functions of AGD1 and METTL13 in CRPC were investigated through cell proliferation assay, Transwell assay, EdU incorporation assays, Annexin V-FITC/PI staining, and sphere formation assays. To uncover the underlying mechanisms of AGD1, RNA pull-down assay, RIP, co-Immunoprecipitation (co-IP), mass spectrometry (MS), Methylated RNA immunoprecipitation (MeRIP) and single-base elongation and ligation-based qPCR amplification method (SELECT) were performed. The effects of AGD1 and METTL13 on CRPC development and metastasis under docetaxel treatment were analyzed using a xenograft mouse model and an organoid model. Additionally, liposomal-chitosan nanocomplex drug delivery systems were designed to explore AGD1's role in regulating docetaxel treatment resistance in CRPC.</p><p><strong>Results: </strong>AGD1 expression was upregulated in PCSCs and exosomes. Downregulating AGD1 enhanced the sensitivity of CRPC to docetaxel treatment by inhibiting their stemness, with the reverse also being true. RNA pull-down, combined with MS, co-IP and RIP assays, demonstrated that AGD1 binds to METTL13 and USP10, forming a complex that facilitates METTL13 protein accumulation through USP10-induced deubiquitination. MeRIP assay and SELECT assay revealed that METTL13 transcriptionally controls the mRNA decay of CD44 via m6A methylation. Additionally, this process activates the pSTAT3/PI3K-AKT signaling pathway. Organoid models and liposomal-chitosan nanocomplex drug delivery systems showed that reducing AGD1 expression enhanced the therapeutic effect of docetaxel in CRPC.</p><p><strong>Conclusions: </strong>AGD1 mediates the stemness and apoptosis of PCSCs and promotes docetaxel treatment resistance by enhancing tumor growth and metastasis through USP10/METTL13-mediated CD44 mRNA decay in CRPC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"12"},"PeriodicalIF":11.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03272-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:大多数前列腺癌患者不可避免地会发展为阉割耐药前列腺癌(CRPC),在这一阶段,多西他赛等化疗药物成为一线治疗药物。然而,化疗抗药性通常会在初期疗效显著后出现。越来越多的证据表明,癌症干细胞通过外泌体产生化疗耐药性。本研究表明,来自前列腺癌干细胞(PCSCs)的AGD1增强了前列腺癌细胞的干性,降低了多西他赛对CRPC的治疗效果:方法:采用定量实时 PCR(qPCR)测定 PCSCs 和外泌体中 AGD1 和 METTL13 mRNA 的表达水平。蛋白表达水平则通过 Western 印迹和点印迹进行检测。通过细胞增殖试验、Transwell试验、EdU掺入试验、Annexin V-FITC/PI染色和小球形成试验研究了AGD1和METTL13在CRPC中的潜在功能。为了揭示 AGD1 的内在机制,研究人员进行了 RNA 下拉实验、RIP、共免疫沉淀(co-Immunoprecipitation,co-IP)、质谱(MS)、甲基化 RNA 免疫沉淀(MeRIP)和基于单碱基延伸和连接的 qPCR 扩增方法(SELECT)。利用异种移植小鼠模型和类器官模型分析了 AGD1 和 METTL13 在多西他赛治疗下对 CRPC 发育和转移的影响。此外,研究人员还设计了脂质体-壳聚糖纳米复合给药系统,以探讨AGD1在调控多西他赛治疗CRPC耐药性中的作用:结果:AGD1在PCSCs和外泌体中表达上调。下调 AGD1 可抑制其干性,从而提高 CRPC 对多西他赛治疗的敏感性,反之亦然。RNA pull-down结合MS、co-IP和RIP检测证明,AGD1与METTL13和USP10结合,形成一个复合物,通过USP10诱导的去泛素化促进METTL13蛋白的积累。MeRIP 分析和 SELECT 分析显示,METTL13 通过 m6A 甲基化转录控制 CD44 的 mRNA 衰减。此外,这一过程还激活了 pSTAT3/PI3K-AKT 信号通路。类器官模型和脂质体-壳聚糖纳米复合给药系统显示,减少AGD1的表达可增强多西他赛对CRPC的治疗效果:结论:AGD1通过USP10/METTL13介导的CD44 mRNA衰减,介导PCSCs的干性和凋亡,并通过增强CRPC中肿瘤的生长和转移,促进多西他赛治疗耐药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AGD1/USP10/METTL13 complexes enhance cancer stem cells proliferation and diminish the therapeutic effect of docetaxel via CD44 m6A modification in castration resistant prostate cancer.

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes. This study demonstrated that AGD1, derived from prostate cancer stem cells (PCSCs), enhanced the stemness of prostate cancer cells and reduced the therapeutic effect of docetaxel in CRPC.

Methods: Quantitative real-time PCR (qPCR) was employed to determine the expression levels of AGD1 and METTL13 mRNAs in PCSCs and exosomes. Protein expression levels were examined using western blots and dot blots. The potential functions of AGD1 and METTL13 in CRPC were investigated through cell proliferation assay, Transwell assay, EdU incorporation assays, Annexin V-FITC/PI staining, and sphere formation assays. To uncover the underlying mechanisms of AGD1, RNA pull-down assay, RIP, co-Immunoprecipitation (co-IP), mass spectrometry (MS), Methylated RNA immunoprecipitation (MeRIP) and single-base elongation and ligation-based qPCR amplification method (SELECT) were performed. The effects of AGD1 and METTL13 on CRPC development and metastasis under docetaxel treatment were analyzed using a xenograft mouse model and an organoid model. Additionally, liposomal-chitosan nanocomplex drug delivery systems were designed to explore AGD1's role in regulating docetaxel treatment resistance in CRPC.

Results: AGD1 expression was upregulated in PCSCs and exosomes. Downregulating AGD1 enhanced the sensitivity of CRPC to docetaxel treatment by inhibiting their stemness, with the reverse also being true. RNA pull-down, combined with MS, co-IP and RIP assays, demonstrated that AGD1 binds to METTL13 and USP10, forming a complex that facilitates METTL13 protein accumulation through USP10-induced deubiquitination. MeRIP assay and SELECT assay revealed that METTL13 transcriptionally controls the mRNA decay of CD44 via m6A methylation. Additionally, this process activates the pSTAT3/PI3K-AKT signaling pathway. Organoid models and liposomal-chitosan nanocomplex drug delivery systems showed that reducing AGD1 expression enhanced the therapeutic effect of docetaxel in CRPC.

Conclusions: AGD1 mediates the stemness and apoptosis of PCSCs and promotes docetaxel treatment resistance by enhancing tumor growth and metastasis through USP10/METTL13-mediated CD44 mRNA decay in CRPC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
期刊最新文献
Targeting of the G9a, DNMT1 and UHRF1 epigenetic complex as an effective strategy against pancreatic ductal adenocarcinoma. AGD1/USP10/METTL13 complexes enhance cancer stem cells proliferation and diminish the therapeutic effect of docetaxel via CD44 m6A modification in castration resistant prostate cancer. PRMT5 inhibition has a potent anti-tumor activity against adenoid cystic carcinoma of salivary glands. ONC213: a novel strategy to resensitize resistant AML cells to venetoclax through induction of mitochondrial stress. Phenotypic diversity of CTCs and tdEVs in liquid biopsies of tumour-draining veins is linked to poor prognosis in colorectal cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1