{"title":"药理学和转录组学综合分析预测白藜芦醇将通过靶向Ccl2和Esr1改善微塑料诱导的肺损伤。","authors":"Yadong Zhang, Jingyi Ren, Siqi Zhu, Zihao Guo, Huanting Pei, Xiaoya Sun, Jiarui Wu, Weijie Yang, Jinshi Zuo, Yuxia Ma","doi":"10.3390/toxics12120910","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microplastics (MPs) are ubiquitous on earth, posing a growing threat to human health. Previous studies have shown that the lung is a primary organ for MPs exposure. Resveratrol (RES) is a common dietary polyphenol that exhibits anti-inflammatory and antioxidant effects. However, whether RES exerts a protective effect against MPs-induced lung damage is still unknown.</p><p><strong>Methods: </strong>The targets of RES were retrieved from five databases. Differentially expressed genes (DEGs) were identified through comprehensive bioinformatic analysis. Multiple algorithms were employed to screen for the core targets. Ultimately, molecular docking analysis and molecular dynamics (MD) simulations were utilized to confirm the binding affinity between RES and the core targets.</p><p><strong>Results: </strong>In total, 1235 DEGs were identified in the transcriptomes. After removing duplicates, a total of 739 RES targets were obtained from five databases, and 66 of these targets intersected with DEGs. The potential core targets (Esr1, Ccl2) were further identified through topological analysis and machine learning. These findings were subsequently verified by molecular docking and MD simulations.</p><p><strong>Conclusions: </strong>This study demonstrated that RES may mitigate lung injury induced by MPs by targeting Esr1 and Ccl2. Our research offers a novel perspective on the prevention and treatment of MPs-induced lung injury.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrative Analysis of Pharmacology and Transcriptomics Predicts Resveratrol Will Ameliorate Microplastics-Induced Lung Damage by Targeting Ccl2 and Esr1.\",\"authors\":\"Yadong Zhang, Jingyi Ren, Siqi Zhu, Zihao Guo, Huanting Pei, Xiaoya Sun, Jiarui Wu, Weijie Yang, Jinshi Zuo, Yuxia Ma\",\"doi\":\"10.3390/toxics12120910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Microplastics (MPs) are ubiquitous on earth, posing a growing threat to human health. Previous studies have shown that the lung is a primary organ for MPs exposure. Resveratrol (RES) is a common dietary polyphenol that exhibits anti-inflammatory and antioxidant effects. However, whether RES exerts a protective effect against MPs-induced lung damage is still unknown.</p><p><strong>Methods: </strong>The targets of RES were retrieved from five databases. Differentially expressed genes (DEGs) were identified through comprehensive bioinformatic analysis. Multiple algorithms were employed to screen for the core targets. Ultimately, molecular docking analysis and molecular dynamics (MD) simulations were utilized to confirm the binding affinity between RES and the core targets.</p><p><strong>Results: </strong>In total, 1235 DEGs were identified in the transcriptomes. After removing duplicates, a total of 739 RES targets were obtained from five databases, and 66 of these targets intersected with DEGs. The potential core targets (Esr1, Ccl2) were further identified through topological analysis and machine learning. These findings were subsequently verified by molecular docking and MD simulations.</p><p><strong>Conclusions: </strong>This study demonstrated that RES may mitigate lung injury induced by MPs by targeting Esr1 and Ccl2. Our research offers a novel perspective on the prevention and treatment of MPs-induced lung injury.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"12 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12120910\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12120910","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integrative Analysis of Pharmacology and Transcriptomics Predicts Resveratrol Will Ameliorate Microplastics-Induced Lung Damage by Targeting Ccl2 and Esr1.
Background: Microplastics (MPs) are ubiquitous on earth, posing a growing threat to human health. Previous studies have shown that the lung is a primary organ for MPs exposure. Resveratrol (RES) is a common dietary polyphenol that exhibits anti-inflammatory and antioxidant effects. However, whether RES exerts a protective effect against MPs-induced lung damage is still unknown.
Methods: The targets of RES were retrieved from five databases. Differentially expressed genes (DEGs) were identified through comprehensive bioinformatic analysis. Multiple algorithms were employed to screen for the core targets. Ultimately, molecular docking analysis and molecular dynamics (MD) simulations were utilized to confirm the binding affinity between RES and the core targets.
Results: In total, 1235 DEGs were identified in the transcriptomes. After removing duplicates, a total of 739 RES targets were obtained from five databases, and 66 of these targets intersected with DEGs. The potential core targets (Esr1, Ccl2) were further identified through topological analysis and machine learning. These findings were subsequently verified by molecular docking and MD simulations.
Conclusions: This study demonstrated that RES may mitigate lung injury induced by MPs by targeting Esr1 and Ccl2. Our research offers a novel perspective on the prevention and treatment of MPs-induced lung injury.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.