果蝇突触复合体的多样化和循环适应。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY PLoS Genetics Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.1371/journal.pgen.1011549
Rana Zakerzade, Ching-Ho Chang, Kamalakar Chatla, Ananya Krishnapura, Samuel P Appiah, Jacki Zhang, Robert L Unckless, Justin P Blumenstiel, Doris Bachtrog, Kevin H-C Wei
{"title":"果蝇突触复合体的多样化和循环适应。","authors":"Rana Zakerzade, Ching-Ho Chang, Kamalakar Chatla, Ananya Krishnapura, Samuel P Appiah, Jacki Zhang, Robert L Unckless, Justin P Blumenstiel, Doris Bachtrog, Kevin H-C Wei","doi":"10.1371/journal.pgen.1011549","DOIUrl":null,"url":null,"abstract":"<p><p>The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover. This is puzzlingly exemplified by the SC of Drosophila, where the central elements and transverse filaments display no identifiable homologs outside of the genus. Here, we exhaustively examine the evolutionary history of the SC in Drosophila taking a comparative phylogenomic approach with high species density to circumvent obscured homology due to rapid sequence evolution. Contrasting starkly against other genes involved in meiotic chromosome pairing, SC genes show significantly elevated rates of coding evolution due to a combination of relaxed constraint and recurrent, widespread positive selection. In particular, the central element cona and transverse filament c(3)G have diversified through tandem and retro-duplications, repeatedly generating paralogs with novel germline activity. In a striking case of molecular convergence, c(3)G paralogs that independently arose in distant lineages evolved under positive selection to have convergent truncations to the protein termini and elevated testes expression. Surprisingly, the expression of SC genes in the germline is prone to change suggesting recurrent regulatory evolution which, in many species, resulted in high testes expression even though Drosophila males are achiasmic. Overall, our study recapitulates the poor conservation of SC components, and further uncovers that the lack of conservation extends to other modalities including copy number, genomic locale, and germline regulation. Considering the elevated testes expression in many Drosophila species and the common ancestor, we suggest that the activity of SC genes in the male germline, while still poorly understood, may be a prime target of constant evolutionary pressures driving repeated adaptations and innovations.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011549"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761671/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diversification and recurrent adaptation of the synaptonemal complex in Drosophila.\",\"authors\":\"Rana Zakerzade, Ching-Ho Chang, Kamalakar Chatla, Ananya Krishnapura, Samuel P Appiah, Jacki Zhang, Robert L Unckless, Justin P Blumenstiel, Doris Bachtrog, Kevin H-C Wei\",\"doi\":\"10.1371/journal.pgen.1011549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover. This is puzzlingly exemplified by the SC of Drosophila, where the central elements and transverse filaments display no identifiable homologs outside of the genus. Here, we exhaustively examine the evolutionary history of the SC in Drosophila taking a comparative phylogenomic approach with high species density to circumvent obscured homology due to rapid sequence evolution. Contrasting starkly against other genes involved in meiotic chromosome pairing, SC genes show significantly elevated rates of coding evolution due to a combination of relaxed constraint and recurrent, widespread positive selection. In particular, the central element cona and transverse filament c(3)G have diversified through tandem and retro-duplications, repeatedly generating paralogs with novel germline activity. In a striking case of molecular convergence, c(3)G paralogs that independently arose in distant lineages evolved under positive selection to have convergent truncations to the protein termini and elevated testes expression. Surprisingly, the expression of SC genes in the germline is prone to change suggesting recurrent regulatory evolution which, in many species, resulted in high testes expression even though Drosophila males are achiasmic. Overall, our study recapitulates the poor conservation of SC components, and further uncovers that the lack of conservation extends to other modalities including copy number, genomic locale, and germline regulation. Considering the elevated testes expression in many Drosophila species and the common ancestor, we suggest that the activity of SC genes in the male germline, while still poorly understood, may be a prime target of constant evolutionary pressures driving repeated adaptations and innovations.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 1\",\"pages\":\"e1011549\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761671/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011549\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011549","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

突触复合体(SC)是一种富含蛋白质的结构,对减数分裂重组和忠实染色体分离至关重要。在I前期早期,该复合体就像一对同源染色体的拉链一样,是一种对称结构,其中中心元件通过横向细丝在两侧连接到染色质锚定的侧元件。尽管在大多数主要的真核生物分类群中发现,这意味着一个非常保守的进化起源,但该复合体的几个组成部分表现出异常高的序列周转率。这在果蝇的SC中得到了令人困惑的例证,其中中心元素和横向细丝在属外没有可识别的同源物。在这里,我们详尽地研究了果蝇SC的进化史,采用比较系统基因组方法与高物种密度,以避免由于快速序列进化而模糊的同源性。与其他参与减数分裂染色体配对的基因形成鲜明对比的是,SC基因显示出编码进化的显著提高,这是由于宽松的约束和反复出现的广泛的正选择的结合。特别是,中心元件cona和横向丝c(3) G通过串联和反向复制而多样化,反复产生具有新种系活性的相似物。在一个引人注目的分子趋同的案例中,c(3) G亲缘在遥远的谱系中独立出现,在正向选择的作用下进化为具有趋同截断的蛋白末端和升高的睾丸表达。令人惊讶的是,SC基因在种系中的表达容易发生变化,这表明在许多物种中,即使雄性果蝇是失视的,也会导致睾丸的高表达。总的来说,我们的研究概括了SC成分的保护不良,并进一步揭示了缺乏保护延伸到其他模式,包括拷贝数,基因组位置和种系调节。考虑到在许多果蝇物种和共同祖先中睾丸表达的升高,我们认为雄性生殖系中SC基因的活性虽然仍然知之甚少,但可能是持续进化压力驱动重复适应和创新的主要目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diversification and recurrent adaptation of the synaptonemal complex in Drosophila.

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover. This is puzzlingly exemplified by the SC of Drosophila, where the central elements and transverse filaments display no identifiable homologs outside of the genus. Here, we exhaustively examine the evolutionary history of the SC in Drosophila taking a comparative phylogenomic approach with high species density to circumvent obscured homology due to rapid sequence evolution. Contrasting starkly against other genes involved in meiotic chromosome pairing, SC genes show significantly elevated rates of coding evolution due to a combination of relaxed constraint and recurrent, widespread positive selection. In particular, the central element cona and transverse filament c(3)G have diversified through tandem and retro-duplications, repeatedly generating paralogs with novel germline activity. In a striking case of molecular convergence, c(3)G paralogs that independently arose in distant lineages evolved under positive selection to have convergent truncations to the protein termini and elevated testes expression. Surprisingly, the expression of SC genes in the germline is prone to change suggesting recurrent regulatory evolution which, in many species, resulted in high testes expression even though Drosophila males are achiasmic. Overall, our study recapitulates the poor conservation of SC components, and further uncovers that the lack of conservation extends to other modalities including copy number, genomic locale, and germline regulation. Considering the elevated testes expression in many Drosophila species and the common ancestor, we suggest that the activity of SC genes in the male germline, while still poorly understood, may be a prime target of constant evolutionary pressures driving repeated adaptations and innovations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
期刊最新文献
Exploring adaptation routes to cold temperatures in the Saccharomyces genus. Functional constraints of wtf killer meiotic drivers. Two transmembrane transcriptional regulators coordinate to activate chitin-induced natural transformation in Vibrio cholerae. The recombination landscape of introgression in yeast. Transcriptomic analysis of iPSC-derived endothelium reveals adaptations to high altitude hypoxia in energy metabolism and inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1