个性化μ-经颅交流电刺激改善了在线脑机接口控制。

Deland Hu Liu, Satyam Kumar, Hussein Alawieh, Frigyes Samuel Racz, Jose Del R Millan
{"title":"个性化μ-经颅交流电刺激改善了在线脑机接口控制。","authors":"Deland Hu Liu, Satyam Kumar, Hussein Alawieh, Frigyes Samuel Racz, Jose Del R Millan","doi":"10.1088/1741-2552/ada9c0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).</p><p><strong>Approach: </strong>Previous studies have identified that the peak power spectral density (PSD) value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 minutes of tACS at the participant-specific, peak µ frequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-state µ SMRs.</p><p><strong>Main results: </strong>After tACS, we observed significant improvements in event-related desynchronizations (ERDs) of µ sensorimotor rhythms (SMRs), and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (N=10) -but not in an active control-stimulation control group (N=10). Lastly, we showed a significant correlation between the resting-state µ SMRs and µ ERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.</p><p><strong>Significance: </strong>Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized μ-transcranial alternating current stimulation improves online brain-computer interface control.\",\"authors\":\"Deland Hu Liu, Satyam Kumar, Hussein Alawieh, Frigyes Samuel Racz, Jose Del R Millan\",\"doi\":\"10.1088/1741-2552/ada9c0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).</p><p><strong>Approach: </strong>Previous studies have identified that the peak power spectral density (PSD) value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 minutes of tACS at the participant-specific, peak µ frequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-state µ SMRs.</p><p><strong>Main results: </strong>After tACS, we observed significant improvements in event-related desynchronizations (ERDs) of µ sensorimotor rhythms (SMRs), and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (N=10) -but not in an active control-stimulation control group (N=10). Lastly, we showed a significant correlation between the resting-state µ SMRs and µ ERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.</p><p><strong>Significance: </strong>Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ada9c0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ada9c0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:基于运动图像(MI)的脑机接口(BCI)通过捕获和解码与特定肢体想象运动相关的脑电图(EEG)信号,使用户能够参与外部环境。尽管脑机接口技术在过去40年中取得了重大进展,但仍存在一个显著的挑战:许多用户缺乏脑机接口的熟练程度,无法产生足够清晰可靠的脑机接口脑模式,因此导致脑机接口的分类率较低。本研究的目的是利用经颅交流电刺激(tACS),以个性化的、生物标志物驱动的方法提高mi - bci的在线性能。方法:已有研究发现,感觉运动怠速节奏的峰值功率谱密度(PSD)值与上肢MI-BCI表现存在神经关联。在这项主动对照的单盲研究中,我们在参与者特定的静息状态感觉运动节律(smr)峰值频率上应用了20分钟的tACS,目的是增强静息状态的µsmr。主要结果:在tACS后,我们观察到健康参与者(N=10)的感觉运动节律(smr)的事件相关去同步(ERDs)和在线MI-BCI解码左手和右手命令的表现显著改善,但在主动对照刺激对照组(N=10)没有显著改善。最后,我们展示了静息状态的微smr和微ERD之间的显著相关性,为观察到的在线脑机接口性能变化提供了机制解释。意义:我们的研究为未来旨在提高脑机接口性能的非侵入性干预奠定了基础,从而提高依赖这些系统的个体的独立性和相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized μ-transcranial alternating current stimulation improves online brain-computer interface control.

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

Approach: Previous studies have identified that the peak power spectral density (PSD) value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 minutes of tACS at the participant-specific, peak µ frequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-state µ SMRs.

Main results: After tACS, we observed significant improvements in event-related desynchronizations (ERDs) of µ sensorimotor rhythms (SMRs), and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (N=10) -but not in an active control-stimulation control group (N=10). Lastly, we showed a significant correlation between the resting-state µ SMRs and µ ERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.

Significance: Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First-in-human experience performing high-resolution cortical mapping using a novel microelectrode array containing 1024 electrodes. Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities. Extension of the visibility concept for EEG signal processing. Predicting EEG seizures using graded spiking neural networks. Deep learning models as learners for EEG-based functional brain networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1