tdCoxSNN:用于连续时间动态预测的时变Cox生存神经网络。

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series C-Applied Statistics Pub Date : 2024-10-11 eCollection Date: 2025-01-01 DOI:10.1093/jrsssc/qlae051
Lang Zeng, Jipeng Zhang, Wei Chen, Ying Ding
{"title":"tdCoxSNN:用于连续时间动态预测的时变Cox生存神经网络。","authors":"Lang Zeng, Jipeng Zhang, Wei Chen, Ying Ding","doi":"10.1093/jrsssc/qlae051","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome. Moreover, by concurrently integrating a convolutional neural network with the survival network, tdCoxSNN can directly take longitudinal images as input. We evaluate and compare our proposed method with joint modelling and landmarking approaches through extensive simulations. We applied the proposed approach to two real datasets. One is a large AMD study, the Age-Related Eye Disease Study, in which more than 50,000 fundus images were captured over a period of 12 years for more than 4,000 participants. Another is a public dataset of the primary biliary cirrhosis disease, where multiple laboratory tests were longitudinally collected to predict the time-to-liver transplant. Our approach demonstrates commendable predictive performance in both simulation studies and the analysis of the two real datasets.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"74 1","pages":"187-203"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725344/pdf/","citationCount":"0","resultStr":"{\"title\":\"tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction.\",\"authors\":\"Lang Zeng, Jipeng Zhang, Wei Chen, Ying Ding\",\"doi\":\"10.1093/jrsssc/qlae051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome. Moreover, by concurrently integrating a convolutional neural network with the survival network, tdCoxSNN can directly take longitudinal images as input. We evaluate and compare our proposed method with joint modelling and landmarking approaches through extensive simulations. We applied the proposed approach to two real datasets. One is a large AMD study, the Age-Related Eye Disease Study, in which more than 50,000 fundus images were captured over a period of 12 years for more than 4,000 participants. Another is a public dataset of the primary biliary cirrhosis disease, where multiple laboratory tests were longitudinally collected to predict the time-to-liver transplant. Our approach demonstrates commendable predictive performance in both simulation studies and the analysis of the two real datasets.</p>\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"74 1\",\"pages\":\"187-203\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlae051\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlae051","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

动态预测的目的是随着时间的推移提供个性化的风险预测,并随着新数据的出现而更新。为了构建进行性眼病——年龄相关性黄斑变性(AMD)的动态预测模型,我们提出了一种时间依赖的Cox生存神经网络(tdCoxSNN),利用眼底纵向图像预测其进展。tdCoxSNN建立在时间依赖的Cox模型上,利用神经网络捕捉时间依赖协变量对生存结果的非线性影响。此外,通过卷积神经网络与生存网络的并行集成,tdCoxSNN可以直接将纵向图像作为输入。我们通过广泛的模拟来评估和比较我们提出的方法与联合建模和地标方法。我们将提出的方法应用于两个真实的数据集。其中一个是一项大型的AMD研究,即与年龄相关的眼病研究,在12年的时间里,4000多名参与者拍摄了5万多张眼底图像。另一个是原发性胆汁性肝硬化疾病的公共数据集,其中纵向收集多项实验室测试以预测肝移植时间。我们的方法在模拟研究和两个真实数据集的分析中都显示出值得称赞的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction.

The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome. Moreover, by concurrently integrating a convolutional neural network with the survival network, tdCoxSNN can directly take longitudinal images as input. We evaluate and compare our proposed method with joint modelling and landmarking approaches through extensive simulations. We applied the proposed approach to two real datasets. One is a large AMD study, the Age-Related Eye Disease Study, in which more than 50,000 fundus images were captured over a period of 12 years for more than 4,000 participants. Another is a public dataset of the primary biliary cirrhosis disease, where multiple laboratory tests were longitudinally collected to predict the time-to-liver transplant. Our approach demonstrates commendable predictive performance in both simulation studies and the analysis of the two real datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
期刊最新文献
tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction. Measuring the impact of new risk factors within survival models. Non-parametric Bayesian approach to multiple treatment comparisons in network meta-analysis with application to comparisons of anti-depressants. Joint modelling of survival and backwards recurrence outcomes: an analysis of factors associated with fertility treatment in the U.S. Walking fingerprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1