{"title":"使用指定被动假体和仿生肌电假体行走的经胫截肢患者的户外地面步态生物力学和能量学。","authors":"Nicole Stafford, Eddie B Gonzalez, Daniel Ferris","doi":"10.1123/jab.2024-0081","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory. We recruited 6 individuals with transtibial amputation to walk an outdoor course with the Open Source Leg prosthesis under continuous proportional myoelectric control and compared it with their passive device. There were no significant differences (P = .142) in cost of transport between prostheses. Participants significantly increased residual limb vastus lateralis (P = .042) and rectus femoris (P = .029) muscle activity during early and midstance phase of walking with the powered prosthesis compared with their passive device. All but one participant preferred walking with myoelectric control compared with their passive prosthesis. The additional mass of the powered ankle prosthesis coupled with increased residual quadriceps activity could explain why the energy cost of walking was not lower compared with a passive prosthesis. This study demonstrates participants can volitionally control a bionic ankle prosthesis to navigate real-world environments.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-10"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outdoor Overground Gait Biomechanics and Energetics in Individuals With Transtibial Amputation Walking With a Prescribed Passive Prosthesis and a Bionic Myoelectric Prosthesis.\",\"authors\":\"Nicole Stafford, Eddie B Gonzalez, Daniel Ferris\",\"doi\":\"10.1123/jab.2024-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory. We recruited 6 individuals with transtibial amputation to walk an outdoor course with the Open Source Leg prosthesis under continuous proportional myoelectric control and compared it with their passive device. There were no significant differences (P = .142) in cost of transport between prostheses. Participants significantly increased residual limb vastus lateralis (P = .042) and rectus femoris (P = .029) muscle activity during early and midstance phase of walking with the powered prosthesis compared with their passive device. All but one participant preferred walking with myoelectric control compared with their passive prosthesis. The additional mass of the powered ankle prosthesis coupled with increased residual quadriceps activity could explain why the energy cost of walking was not lower compared with a passive prosthesis. This study demonstrates participants can volitionally control a bionic ankle prosthesis to navigate real-world environments.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2024-0081\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2024-0081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Outdoor Overground Gait Biomechanics and Energetics in Individuals With Transtibial Amputation Walking With a Prescribed Passive Prosthesis and a Bionic Myoelectric Prosthesis.
The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory. We recruited 6 individuals with transtibial amputation to walk an outdoor course with the Open Source Leg prosthesis under continuous proportional myoelectric control and compared it with their passive device. There were no significant differences (P = .142) in cost of transport between prostheses. Participants significantly increased residual limb vastus lateralis (P = .042) and rectus femoris (P = .029) muscle activity during early and midstance phase of walking with the powered prosthesis compared with their passive device. All but one participant preferred walking with myoelectric control compared with their passive prosthesis. The additional mass of the powered ankle prosthesis coupled with increased residual quadriceps activity could explain why the energy cost of walking was not lower compared with a passive prosthesis. This study demonstrates participants can volitionally control a bionic ankle prosthesis to navigate real-world environments.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.