使用指定被动假体和仿生肌电假体行走的经胫截肢患者的户外地面步态生物力学和能量学。

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Applied Biomechanics Pub Date : 2025-01-13 DOI:10.1123/jab.2024-0081
Nicole Stafford, Eddie B Gonzalez, Daniel Ferris
{"title":"使用指定被动假体和仿生肌电假体行走的经胫截肢患者的户外地面步态生物力学和能量学。","authors":"Nicole Stafford, Eddie B Gonzalez, Daniel Ferris","doi":"10.1123/jab.2024-0081","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory. We recruited 6 individuals with transtibial amputation to walk an outdoor course with the Open Source Leg prosthesis under continuous proportional myoelectric control and compared it with their passive device. There were no significant differences (P = .142) in cost of transport between prostheses. Participants significantly increased residual limb vastus lateralis (P = .042) and rectus femoris (P = .029) muscle activity during early and midstance phase of walking with the powered prosthesis compared with their passive device. All but one participant preferred walking with myoelectric control compared with their passive prosthesis. The additional mass of the powered ankle prosthesis coupled with increased residual quadriceps activity could explain why the energy cost of walking was not lower compared with a passive prosthesis. This study demonstrates participants can volitionally control a bionic ankle prosthesis to navigate real-world environments.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-10"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outdoor Overground Gait Biomechanics and Energetics in Individuals With Transtibial Amputation Walking With a Prescribed Passive Prosthesis and a Bionic Myoelectric Prosthesis.\",\"authors\":\"Nicole Stafford, Eddie B Gonzalez, Daniel Ferris\",\"doi\":\"10.1123/jab.2024-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory. We recruited 6 individuals with transtibial amputation to walk an outdoor course with the Open Source Leg prosthesis under continuous proportional myoelectric control and compared it with their passive device. There were no significant differences (P = .142) in cost of transport between prostheses. Participants significantly increased residual limb vastus lateralis (P = .042) and rectus femoris (P = .029) muscle activity during early and midstance phase of walking with the powered prosthesis compared with their passive device. All but one participant preferred walking with myoelectric control compared with their passive prosthesis. The additional mass of the powered ankle prosthesis coupled with increased residual quadriceps activity could explain why the energy cost of walking was not lower compared with a passive prosthesis. This study demonstrates participants can volitionally control a bionic ankle prosthesis to navigate real-world environments.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2024-0081\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2024-0081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

与身体健全的个体相比,经胫骨截肢的个体行走的代谢成本通常更大。动力假肢的一个目标是通过复制生物踝关节功能来减少代谢缺陷。经胫骨截肢者可激活残肢肌肉,自主控制仿生踝关节假肢行走;然而,肌电控制在实验室外的表现尚不清楚。我们招募了6名胫骨截肢患者,在连续比例肌电控制下,使用开源假肢进行户外行走,并将其与被动装置进行比较。两种修复体的运输成本差异无统计学意义(P = 0.142)。与被动装置相比,使用动力假肢的参与者在行走的早期和中期显著增加了残肢股外侧肌(P = 0.042)和股直肌(P = 0.029)的肌肉活动。与被动假肢相比,除了一名参与者外,所有参与者都更喜欢用肌电控制行走。动力踝关节假体的额外质量加上残余股四头肌活动的增加可以解释为什么行走的能量消耗并不比被动假体低。这项研究表明,参与者可以自愿控制仿生踝关节假体来导航现实世界的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outdoor Overground Gait Biomechanics and Energetics in Individuals With Transtibial Amputation Walking With a Prescribed Passive Prosthesis and a Bionic Myoelectric Prosthesis.

The metabolic cost of walking for individuals with transtibial amputation is generally greater compared with able-bodied individuals. One aim of powered prostheses is to reduce metabolic deficits by replicating biological ankle function. Individuals with transtibial amputation can activate their residual limb muscles to volitionally control bionic ankle prostheses for walking; however, it is unknown how myoelectric control performs outside the laboratory. We recruited 6 individuals with transtibial amputation to walk an outdoor course with the Open Source Leg prosthesis under continuous proportional myoelectric control and compared it with their passive device. There were no significant differences (P = .142) in cost of transport between prostheses. Participants significantly increased residual limb vastus lateralis (P = .042) and rectus femoris (P = .029) muscle activity during early and midstance phase of walking with the powered prosthesis compared with their passive device. All but one participant preferred walking with myoelectric control compared with their passive prosthesis. The additional mass of the powered ankle prosthesis coupled with increased residual quadriceps activity could explain why the energy cost of walking was not lower compared with a passive prosthesis. This study demonstrates participants can volitionally control a bionic ankle prosthesis to navigate real-world environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
期刊最新文献
Forty Years of the Journal of Applied Biomechanics: A Message From the Editor. Electromyography-Informed Estimates of Joint Contact Forces Within the Lower Back and Knee Joints During a Diverse Set of Industry-Relevant Manual Lifting Tasks. Outdoor Overground Gait Biomechanics and Energetics in Individuals With Transtibial Amputation Walking With a Prescribed Passive Prosthesis and a Bionic Myoelectric Prosthesis. Peak Weight Acceptance, Mid Stance Trough, and Peak Push-Off Force Symmetry Are Decreased in Older Adults Compared With Young Adults. Relationship of Age and Running Biomechanics in Female Recreational Runners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1