通过互惠拥抱放大实现高效自催化级联电路,用于从检测到治疗的应用

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-15 DOI:10.1021/acs.analchem.4c05701
Chunli Yang, Yuqing Zhang, Zhaorong Mo, Jiayang He, Zhihan Zhang, Yaqin Chai, Ruo Yuan, Wenju Xu
{"title":"通过互惠拥抱放大实现高效自催化级联电路,用于从检测到治疗的应用","authors":"Chunli Yang, Yuqing Zhang, Zhaorong Mo, Jiayang He, Zhihan Zhang, Yaqin Chai, Ruo Yuan, Wenju Xu","doi":"10.1021/acs.analchem.4c05701","DOIUrl":null,"url":null,"abstract":"Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (<b>T</b>), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic <b>T</b> repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3<i>N</i><sup>n</sup>). Our experimental verifications manifested that the <b>T</b>-dependent AOCC amplifier achieved fast input transduction and efficient fluorescence readout. As predicted, the flexible programming of reactive hairpin species endowed the repeating nicks in productive 3HCR nanowires with great possibilities and accessibilities to graft tailored modular elements, such as G-rich AS1411 aptamers capable of adopting G-quadruplex conformations (G4) that readily facilitated the embedding of zinc(II) protoporphyrin IX (ZnPPIX), a kind of heme oxygenase-1 enzyme inhibitor. Thus, the cascading ZnPPIX/G4 entities acted as fluorescent signal reporters, photosensitizers and anticancer drugs, thereby creating an updated AOCC-based assay-to-treat platform for ultrasensitive biosensing, discernible cell imaging and efficient photodynamic therapy of cancer cells. This would offer a new paradigm to advance the rational integration of dynamic DNA assembly and amplifiable recycling circuits for applicable bioassay and theranostics.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"4 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Efficiency Autocatalysis-Oriented Cascade Circuit via Reciprocal Hug-Amplification for Assay-to-Treat Application\",\"authors\":\"Chunli Yang, Yuqing Zhang, Zhaorong Mo, Jiayang He, Zhihan Zhang, Yaqin Chai, Ruo Yuan, Wenju Xu\",\"doi\":\"10.1021/acs.analchem.4c05701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (<b>T</b>), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic <b>T</b> repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3<i>N</i><sup>n</sup>). Our experimental verifications manifested that the <b>T</b>-dependent AOCC amplifier achieved fast input transduction and efficient fluorescence readout. As predicted, the flexible programming of reactive hairpin species endowed the repeating nicks in productive 3HCR nanowires with great possibilities and accessibilities to graft tailored modular elements, such as G-rich AS1411 aptamers capable of adopting G-quadruplex conformations (G4) that readily facilitated the embedding of zinc(II) protoporphyrin IX (ZnPPIX), a kind of heme oxygenase-1 enzyme inhibitor. Thus, the cascading ZnPPIX/G4 entities acted as fluorescent signal reporters, photosensitizers and anticancer drugs, thereby creating an updated AOCC-based assay-to-treat platform for ultrasensitive biosensing, discernible cell imaging and efficient photodynamic therapy of cancer cells. This would offer a new paradigm to advance the rational integration of dynamic DNA assembly and amplifiable recycling circuits for applicable bioassay and theranostics.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05701\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05701","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A High-Efficiency Autocatalysis-Oriented Cascade Circuit via Reciprocal Hug-Amplification for Assay-to-Treat Application
Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (T), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic T repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3Nn). Our experimental verifications manifested that the T-dependent AOCC amplifier achieved fast input transduction and efficient fluorescence readout. As predicted, the flexible programming of reactive hairpin species endowed the repeating nicks in productive 3HCR nanowires with great possibilities and accessibilities to graft tailored modular elements, such as G-rich AS1411 aptamers capable of adopting G-quadruplex conformations (G4) that readily facilitated the embedding of zinc(II) protoporphyrin IX (ZnPPIX), a kind of heme oxygenase-1 enzyme inhibitor. Thus, the cascading ZnPPIX/G4 entities acted as fluorescent signal reporters, photosensitizers and anticancer drugs, thereby creating an updated AOCC-based assay-to-treat platform for ultrasensitive biosensing, discernible cell imaging and efficient photodynamic therapy of cancer cells. This would offer a new paradigm to advance the rational integration of dynamic DNA assembly and amplifiable recycling circuits for applicable bioassay and theranostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood Two-Step Acoustic Cell Separation Based on Cell Size and Acoustic Impedance─toward Isolation of Viable Circulating Tumor Cells NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra A Dual-Mode Colorimetric and Fluorescence Biosensor Based on a Nucleic Acid Multiplexing Platform for the Detection of Listeria monocytogenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1