基于 DACH 的手性传感平台作为可调苯甲酰胺-手性溶解剂用于 NMR 对映选择性鉴别

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-14 DOI:10.1021/acs.analchem.4c06024
Shuai-Hua Shi, Xiao-Juan Wang, Yuan-Yuan Gao, Tao Wang, Chun-Yu Wang, Zi Wang, Qiang Wang, Fei Li, Gao-Wei Li
{"title":"基于 DACH 的手性传感平台作为可调苯甲酰胺-手性溶解剂用于 NMR 对映选择性鉴别","authors":"Shuai-Hua Shi, Xiao-Juan Wang, Yuan-Yuan Gao, Tao Wang, Chun-Yu Wang, Zi Wang, Qiang Wang, Fei Li, Gao-Wei Li","doi":"10.1021/acs.analchem.4c06024","DOIUrl":null,"url":null,"abstract":"Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure <i>trans</i>-1,2-diaminocyclohexane (<i>trans</i>-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives <b>6a–6n</b> have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in <sup>1</sup>H NMR analysis. The highly efficient chiral recognition of CSA <b>6e</b> on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via <sup>1</sup>H, <sup>19</sup>F, and <sup>31</sup>P NMR spectroscopy. The quality of enantiodiscrimination was evaluated by means of the enantioresolution parameter <i>R</i><sub>s</sub>. Single-crystal X-ray analysis of three derivatives <b>6c</b>, <b>6e</b>, and <b>6h</b> helped to understand enantiomeric recognition for the promising NMR analysis. Interestingly, the NMR signals of nonequivalent protons between the <i>R</i> and <i>S</i> configurations were completely opposite in the presence of CSA <b>6e</b> and its stereoisomer, which can be utilized to establish a straightforward method for the configuration assignment of diverse hydroxy acid substrates.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DACH-Based Chiral Sensing Platforms as Tunable Benzamide-Chiral Solvating Agents for NMR Enantioselective Discrimination\",\"authors\":\"Shuai-Hua Shi, Xiao-Juan Wang, Yuan-Yuan Gao, Tao Wang, Chun-Yu Wang, Zi Wang, Qiang Wang, Fei Li, Gao-Wei Li\",\"doi\":\"10.1021/acs.analchem.4c06024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure <i>trans</i>-1,2-diaminocyclohexane (<i>trans</i>-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives <b>6a–6n</b> have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in <sup>1</sup>H NMR analysis. The highly efficient chiral recognition of CSA <b>6e</b> on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via <sup>1</sup>H, <sup>19</sup>F, and <sup>31</sup>P NMR spectroscopy. The quality of enantiodiscrimination was evaluated by means of the enantioresolution parameter <i>R</i><sub>s</sub>. Single-crystal X-ray analysis of three derivatives <b>6c</b>, <b>6e</b>, and <b>6h</b> helped to understand enantiomeric recognition for the promising NMR analysis. Interestingly, the NMR signals of nonequivalent protons between the <i>R</i> and <i>S</i> configurations were completely opposite in the presence of CSA <b>6e</b> and its stereoisomer, which can be utilized to establish a straightforward method for the configuration assignment of diverse hydroxy acid substrates.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06024\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DACH-Based Chiral Sensing Platforms as Tunable Benzamide-Chiral Solvating Agents for NMR Enantioselective Discrimination
Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure trans-1,2-diaminocyclohexane (trans-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives 6a–6n have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in 1H NMR analysis. The highly efficient chiral recognition of CSA 6e on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via 1H, 19F, and 31P NMR spectroscopy. The quality of enantiodiscrimination was evaluated by means of the enantioresolution parameter Rs. Single-crystal X-ray analysis of three derivatives 6c, 6e, and 6h helped to understand enantiomeric recognition for the promising NMR analysis. Interestingly, the NMR signals of nonequivalent protons between the R and S configurations were completely opposite in the presence of CSA 6e and its stereoisomer, which can be utilized to establish a straightforward method for the configuration assignment of diverse hydroxy acid substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood Two-Step Acoustic Cell Separation Based on Cell Size and Acoustic Impedance─toward Isolation of Viable Circulating Tumor Cells NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra A Dual-Mode Colorimetric and Fluorescence Biosensor Based on a Nucleic Acid Multiplexing Platform for the Detection of Listeria monocytogenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1