用于监测细胞凋亡过程中细胞因子动态表达的智能无创 SERS 免疫传感器

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-14 DOI:10.1021/acs.analchem.4c05539
Chenyu Zhang, Zutao Chen, Guohua Qi, Yu Tian, Xiongjian Zheng, Xingkang Diao, Jiao Kong, Xingkai Ju, Jing Li, Shaojun Dong, Yongdong Jin
{"title":"用于监测细胞凋亡过程中细胞因子动态表达的智能无创 SERS 免疫传感器","authors":"Chenyu Zhang, Zutao Chen, Guohua Qi, Yu Tian, Xiongjian Zheng, Xingkang Diao, Jiao Kong, Xingkai Ju, Jing Li, Shaojun Dong, Yongdong Jin","doi":"10.1021/acs.analchem.4c05539","DOIUrl":null,"url":null,"abstract":"Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"43 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart and Noninvasive SERS Immunosensors for Monitoring Dynamic Expression of Cytokines during Cell Pyroptosis\",\"authors\":\"Chenyu Zhang, Zutao Chen, Guohua Qi, Yu Tian, Xiongjian Zheng, Xingkang Diao, Jiao Kong, Xingkai Ju, Jing Li, Shaojun Dong, Yongdong Jin\",\"doi\":\"10.1021/acs.analchem.4c05539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05539\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05539","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart and Noninvasive SERS Immunosensors for Monitoring Dynamic Expression of Cytokines during Cell Pyroptosis
Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood Two-Step Acoustic Cell Separation Based on Cell Size and Acoustic Impedance─toward Isolation of Viable Circulating Tumor Cells NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra A Dual-Mode Colorimetric and Fluorescence Biosensor Based on a Nucleic Acid Multiplexing Platform for the Detection of Listeria monocytogenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1