{"title":"新型6-羟基苯并噻唑-2-羧酰胺类单胺氧化酶B抑制剂的构象研究与设计","authors":"Dong Xie, Penghang Guo, Quantang Zhao, Yu Gao, Jianan Zhang, Jie Zhou","doi":"10.2174/0115680266354743241216065502","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>6-hydroxybenzothiazole-2-carboxamide is a novel, potent, and specific monoamine oxidase B inhibitor that can be used to study the structure of molecules and come up with new ways to protect neurons.</p><p><strong>Objective: </strong>The objective of this work was to create an effective model using derivatives of 6- hydroxybenzothiazole-2-carboxamide and establish a dependable predictive foundation for the development of neuroprotective monoamine oxidase B inhibitors for the treatment of neurodegenerative diseases.</p><p><strong>Methods: </strong>The construction and optimization of all compounds were carried out sequentially using ChemDraw software and Sybyl-X software. The optimized compounds were further analyzed using the COMSIA approach and the Sybyl-X software tool for QSAR modeling. A set of novel compounds of 6-hydroxybenzothiazole-2-carboxamide were created and their IC50 values were forecasted using QSAR modeling. Ultimately, the recently developed compounds underwent a screening process using their IC50 values, and molecular docking tests were conducted on the ten most promising compounds with the highest IC50 values.</p><p><strong>Results: </strong>The 3D-QSAR model exhibited favorable outcomes. The value of q2 in the COMSIA model was 0.569. The model demonstrated a superior r2 value of 0.915, a lower SEE of 0.109, and a higher F-value of 52.714. The statistical findings and validation of the model were deemed adequate. Furthermore, analyzing the contour plots might assist in identifying the necessary structural specifications.</p><p><strong>Conclusion: </strong>This work has the potential to provide an insight into the development of active medicines that protect the nervous system against neurodegenerative disorders.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformation Study and Design of Novel 6-Hydroxybenzothiazole-2-Carboxamides as Potentially Potent and Selective Monoamine Oxidase B Inhibitors for Neuroprotection.\",\"authors\":\"Dong Xie, Penghang Guo, Quantang Zhao, Yu Gao, Jianan Zhang, Jie Zhou\",\"doi\":\"10.2174/0115680266354743241216065502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>6-hydroxybenzothiazole-2-carboxamide is a novel, potent, and specific monoamine oxidase B inhibitor that can be used to study the structure of molecules and come up with new ways to protect neurons.</p><p><strong>Objective: </strong>The objective of this work was to create an effective model using derivatives of 6- hydroxybenzothiazole-2-carboxamide and establish a dependable predictive foundation for the development of neuroprotective monoamine oxidase B inhibitors for the treatment of neurodegenerative diseases.</p><p><strong>Methods: </strong>The construction and optimization of all compounds were carried out sequentially using ChemDraw software and Sybyl-X software. The optimized compounds were further analyzed using the COMSIA approach and the Sybyl-X software tool for QSAR modeling. A set of novel compounds of 6-hydroxybenzothiazole-2-carboxamide were created and their IC50 values were forecasted using QSAR modeling. Ultimately, the recently developed compounds underwent a screening process using their IC50 values, and molecular docking tests were conducted on the ten most promising compounds with the highest IC50 values.</p><p><strong>Results: </strong>The 3D-QSAR model exhibited favorable outcomes. The value of q2 in the COMSIA model was 0.569. The model demonstrated a superior r2 value of 0.915, a lower SEE of 0.109, and a higher F-value of 52.714. The statistical findings and validation of the model were deemed adequate. Furthermore, analyzing the contour plots might assist in identifying the necessary structural specifications.</p><p><strong>Conclusion: </strong>This work has the potential to provide an insight into the development of active medicines that protect the nervous system against neurodegenerative disorders.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266354743241216065502\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266354743241216065502","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Conformation Study and Design of Novel 6-Hydroxybenzothiazole-2-Carboxamides as Potentially Potent and Selective Monoamine Oxidase B Inhibitors for Neuroprotection.
Background: 6-hydroxybenzothiazole-2-carboxamide is a novel, potent, and specific monoamine oxidase B inhibitor that can be used to study the structure of molecules and come up with new ways to protect neurons.
Objective: The objective of this work was to create an effective model using derivatives of 6- hydroxybenzothiazole-2-carboxamide and establish a dependable predictive foundation for the development of neuroprotective monoamine oxidase B inhibitors for the treatment of neurodegenerative diseases.
Methods: The construction and optimization of all compounds were carried out sequentially using ChemDraw software and Sybyl-X software. The optimized compounds were further analyzed using the COMSIA approach and the Sybyl-X software tool for QSAR modeling. A set of novel compounds of 6-hydroxybenzothiazole-2-carboxamide were created and their IC50 values were forecasted using QSAR modeling. Ultimately, the recently developed compounds underwent a screening process using their IC50 values, and molecular docking tests were conducted on the ten most promising compounds with the highest IC50 values.
Results: The 3D-QSAR model exhibited favorable outcomes. The value of q2 in the COMSIA model was 0.569. The model demonstrated a superior r2 value of 0.915, a lower SEE of 0.109, and a higher F-value of 52.714. The statistical findings and validation of the model were deemed adequate. Furthermore, analyzing the contour plots might assist in identifying the necessary structural specifications.
Conclusion: This work has the potential to provide an insight into the development of active medicines that protect the nervous system against neurodegenerative disorders.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.