利用工矿固体废弃物转化为相变材料储热。

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemPlusChem Pub Date : 2025-01-14 DOI:10.1002/cplu.202400519
Jiaping Jiang, Yitong Cao, Guo Li, Long Geng, Xiao Zhang, Jiateng Zhao, Changhui Liu
{"title":"利用工矿固体废弃物转化为相变材料储热。","authors":"Jiaping Jiang, Yitong Cao, Guo Li, Long Geng, Xiao Zhang, Jiateng Zhao, Changhui Liu","doi":"10.1002/cplu.202400519","DOIUrl":null,"url":null,"abstract":"<p><p>The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc. These methods not only waste land resources, but also have a limited scope of application. Mining and metallurgical industrial solid wastes are generally characterized by high porosity, certain mechanical strength, and high yield, which can be used as a porous matrix to support phase change materials (PCMs) after modification treatment, thus solving the problem of easy leakage of PCMs. At present, there is no overview of mining industry solid waste in PCM applications. This paper provides a detailed review of the research progress of FA, slag and tailings in the field of phase change thermal storage materials in recent years, which provides useful ideas for further research on the comprehensive utilization of solid wastes in the mining and metallurgical industry and the reduction of their pollution of the environment.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400519"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Industrial Mining Solid Waste through Conversion to Phase-Change Materials for Thermal Energy Storage.\",\"authors\":\"Jiaping Jiang, Yitong Cao, Guo Li, Long Geng, Xiao Zhang, Jiateng Zhao, Changhui Liu\",\"doi\":\"10.1002/cplu.202400519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc. These methods not only waste land resources, but also have a limited scope of application. Mining and metallurgical industrial solid wastes are generally characterized by high porosity, certain mechanical strength, and high yield, which can be used as a porous matrix to support phase change materials (PCMs) after modification treatment, thus solving the problem of easy leakage of PCMs. At present, there is no overview of mining industry solid waste in PCM applications. This paper provides a detailed review of the research progress of FA, slag and tailings in the field of phase change thermal storage materials in recent years, which provides useful ideas for further research on the comprehensive utilization of solid wastes in the mining and metallurgical industry and the reduction of their pollution of the environment.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400519\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400519\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400519","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采矿业每年产生大量的工业固体废物。其中,粉煤灰(FA)、矿渣和尾矿是三种主要的固体废物,如果处理不当,会造成土壤污染、大气污染、水污染,严重威胁人体健康。目前,工业固体废物的处理方法主要有直接填埋、回收高价值组分、生产建筑材料等。这些方法不仅浪费土地资源,而且适用范围有限。采矿和冶金工业固体废物一般具有孔隙率高、有一定机械强度、产量高等特点,经改性处理后可作为多孔基质支撑相变材料(pcm),从而解决了相变材料易泄漏的问题。目前,对矿业固体废物在PCM中的应用还没有综述。本文详细综述了近年来矿渣、矿渣和尾矿在相变储热材料领域的研究进展,为进一步研究矿冶工业固体废物的综合利用和减少其对环境的污染提供有益的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Industrial Mining Solid Waste through Conversion to Phase-Change Materials for Thermal Energy Storage.

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc. These methods not only waste land resources, but also have a limited scope of application. Mining and metallurgical industrial solid wastes are generally characterized by high porosity, certain mechanical strength, and high yield, which can be used as a porous matrix to support phase change materials (PCMs) after modification treatment, thus solving the problem of easy leakage of PCMs. At present, there is no overview of mining industry solid waste in PCM applications. This paper provides a detailed review of the research progress of FA, slag and tailings in the field of phase change thermal storage materials in recent years, which provides useful ideas for further research on the comprehensive utilization of solid wastes in the mining and metallurgical industry and the reduction of their pollution of the environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
期刊最新文献
Electrocatalytic Lignin Valorization via Enhanced H₂O₂ Generation Using a MWNCT-Modified Gas Diffusion Electrode. Novel DMAP@Mesoporous Silica Hybrid Heterogeneous Catalysts for the Knoevenagel Condensation: Greener Synthesis through Eco-friendly Solvents. Bulky Ligands for Open Channels: Manganese (II) sql MOFs from Pyridyl-Functionalised [3]Polynorbornanes. Multifluoro-modification Enhancing Catalytic Activity and Thermal Stability of Bis(imino)pyridylcobalt Chlorides for Linear Polyethylene. Stabilization of Verdigris Pigment on Paper: Evaluation of Antioxidants Under Mild Accelerated Degradation Conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1