Alexandra Rios-Echeverri, Carlos E Puerto Galvis, Karen J Ardila-Fierro, José G Hernández
{"title":"基于脯氨酸和苯丙氨酸的有机催化多肽材料的化学和酶的机械合成。","authors":"Alexandra Rios-Echeverri, Carlos E Puerto Galvis, Karen J Ardila-Fierro, José G Hernández","doi":"10.1002/cssc.202402446","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, mechanosynthesis of peptides through either chemical or enzymatic routes has been accomplished. In part, this advancement has been driven due to the organocatalytic properties of peptide-based biomaterials. In this work, we report the merging of chemical and enzymatic protocols under mechanochemical conditions to synthesize peptide materials based on L-proline and L-phenylalanine. Compared to traditional step-by-step peptide synthesis in solution, our mechanochemical approach combining peptide coupling reagents with the proteolytic enzyme papain offers a more sustainable route by reducing the number of synthetic steps, shortening reaction times, increasing chemical yields, and minimizing waste production. Notably, the mechanosynthesized peptides exhibited organocatalytic activity in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402446"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical and Enzymatic Mechanosynthesis of Organocatalytic Peptide Materials Based on Proline and Phenylalanine.\",\"authors\":\"Alexandra Rios-Echeverri, Carlos E Puerto Galvis, Karen J Ardila-Fierro, José G Hernández\",\"doi\":\"10.1002/cssc.202402446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, mechanosynthesis of peptides through either chemical or enzymatic routes has been accomplished. In part, this advancement has been driven due to the organocatalytic properties of peptide-based biomaterials. In this work, we report the merging of chemical and enzymatic protocols under mechanochemical conditions to synthesize peptide materials based on L-proline and L-phenylalanine. Compared to traditional step-by-step peptide synthesis in solution, our mechanochemical approach combining peptide coupling reagents with the proteolytic enzyme papain offers a more sustainable route by reducing the number of synthetic steps, shortening reaction times, increasing chemical yields, and minimizing waste production. Notably, the mechanosynthesized peptides exhibited organocatalytic activity in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402446\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402446\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402446","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemical and Enzymatic Mechanosynthesis of Organocatalytic Peptide Materials Based on Proline and Phenylalanine.
In recent years, mechanosynthesis of peptides through either chemical or enzymatic routes has been accomplished. In part, this advancement has been driven due to the organocatalytic properties of peptide-based biomaterials. In this work, we report the merging of chemical and enzymatic protocols under mechanochemical conditions to synthesize peptide materials based on L-proline and L-phenylalanine. Compared to traditional step-by-step peptide synthesis in solution, our mechanochemical approach combining peptide coupling reagents with the proteolytic enzyme papain offers a more sustainable route by reducing the number of synthetic steps, shortening reaction times, increasing chemical yields, and minimizing waste production. Notably, the mechanosynthesized peptides exhibited organocatalytic activity in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology