Lúcio Lourenço de Freitas Neto, Rudã Fernandes Brandão Santos, Maria Angélica da Silva, Ranilson de Souza Bezerra, Flávia Saldanha-Corrêa, Breno Pannia Espósito
{"title":"Zinc speciation promotes distinct effects on dinoflagellate growth and coral trypsin-like enzyme activity.","authors":"Lúcio Lourenço de Freitas Neto, Rudã Fernandes Brandão Santos, Maria Angélica da Silva, Ranilson de Souza Bezerra, Flávia Saldanha-Corrêa, Breno Pannia Espósito","doi":"10.1007/s10534-025-00664-y","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis. B. minutum was the most sensitive strain to any form of added Zn. For the other strains, the complex [Zn(His)<sub>2</sub>] better translated metal load into growth. This complex was the only tested compound that did not interfere with the trypsin-like activity of Millepora alcicornis extracts. Also, histidine was able to recover the activity of the enzyme inhibited by zinc. [Zn(His)<sub>2</sub>] is a potential biocarrier of zinc for microalgae or coral cultivation. These findings suggest that the control of chemical speciation of an essential metal could lead to useful compounds that assist autotrophy, while not affecting heterotrophy, in the coral holobiont.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00664-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Zinc speciation promotes distinct effects on dinoflagellate growth and coral trypsin-like enzyme activity.
Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis. B. minutum was the most sensitive strain to any form of added Zn. For the other strains, the complex [Zn(His)2] better translated metal load into growth. This complex was the only tested compound that did not interfere with the trypsin-like activity of Millepora alcicornis extracts. Also, histidine was able to recover the activity of the enzyme inhibited by zinc. [Zn(His)2] is a potential biocarrier of zinc for microalgae or coral cultivation. These findings suggest that the control of chemical speciation of an essential metal could lead to useful compounds that assist autotrophy, while not affecting heterotrophy, in the coral holobiont.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.