{"title":"布洛芬衍生物的合成策略:分类研究。","authors":"Kuchana Madhavi, Barla Karuna Devi","doi":"10.2174/0115680266334717241127043711","DOIUrl":null,"url":null,"abstract":"<p><p>Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs. The present review highlights the different modifications done to the carboxylic group in Ibuprofen, by various researchers such as esters, amides, hydroxamic acids, and N-substituted hydrazides, along with the integration of heterocyclic moieties like triazoles, tetrazoles, and oxadiazoles. Additionally, Ibuprofen has been hybridized with other drugs and complexed with metals to enhance therapeutic effects. The different synthetic strategies that were employed were esterification, amidation, condensation, Schiff’s base formation, etc. These modifications have resulted in derivatives with antimicrobial, antifungal, anticancer, and other biological activities, aiming to reduce side effects while retaining or enhancing anti-inflammatory, analgesic, and antipyretic properties.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Strategies for the Development of Ibuprofen Derivatives: A Classified Study.\",\"authors\":\"Kuchana Madhavi, Barla Karuna Devi\",\"doi\":\"10.2174/0115680266334717241127043711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs. The present review highlights the different modifications done to the carboxylic group in Ibuprofen, by various researchers such as esters, amides, hydroxamic acids, and N-substituted hydrazides, along with the integration of heterocyclic moieties like triazoles, tetrazoles, and oxadiazoles. Additionally, Ibuprofen has been hybridized with other drugs and complexed with metals to enhance therapeutic effects. The different synthetic strategies that were employed were esterification, amidation, condensation, Schiff’s base formation, etc. These modifications have resulted in derivatives with antimicrobial, antifungal, anticancer, and other biological activities, aiming to reduce side effects while retaining or enhancing anti-inflammatory, analgesic, and antipyretic properties.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266334717241127043711\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266334717241127043711","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthetic Strategies for the Development of Ibuprofen Derivatives: A Classified Study.
Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs. The present review highlights the different modifications done to the carboxylic group in Ibuprofen, by various researchers such as esters, amides, hydroxamic acids, and N-substituted hydrazides, along with the integration of heterocyclic moieties like triazoles, tetrazoles, and oxadiazoles. Additionally, Ibuprofen has been hybridized with other drugs and complexed with metals to enhance therapeutic effects. The different synthetic strategies that were employed were esterification, amidation, condensation, Schiff’s base formation, etc. These modifications have resulted in derivatives with antimicrobial, antifungal, anticancer, and other biological activities, aiming to reduce side effects while retaining or enhancing anti-inflammatory, analgesic, and antipyretic properties.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.