{"title":"IL-17通过trim31依赖性MEF2C k63连锁多泛素化激活NSCLC细胞中PD-L1基因的转录。","authors":"Shuai Ying, Ningxia Wu, Yuting Ruan, Wen Ge, Pei Ma, Tongpeng Xu, Yongqian Shu, Yingwei Wang, Wen Qiu, Chenhui Zhao","doi":"10.1186/s12885-025-13473-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.</p><p><strong>Methods: </strong>RT‒PCR, real-time PCR, and IB were used to assess the levels of PD-L1, MEF2C, and TRIM31 in NSCLC tissues as well as in IL-17-stimulated H1299 or PC9 cells. Bioinformatics analysis, luciferase assays, and ChIP were utilized to investigate the transcriptional mechanism of the PD-L1 gene. Co-IP/IB was used to examine the interaction between MEF2C and PD-L1, including MEF2C ubiquitination. IHC staining was carried out to analyse the expression of IL-17RA, MEF2C, TRIM31, and PD-L1 in NSCLC tissue arrays. The corresponding plasmids were constructed and identified. An isograft model was used to verify the findings in vitro.</p><p><strong>Results: </strong>PD-L1, MEF2C and TRIM31 expression levels were increased in NSCLC tissues and NSCLC cells exposed to IL-17. Mechanistically, MEF2C could bind to the - 778 to -475 nt and - 336 to -97 nt regions of the PD-L1 promoter. TRIM31 could mediate MEF2C K63-linked polyubiquitination at Lys 25, increasing MEF2C recruitment to the PD-L1 promoter and PD-L1 gene transcription. MEF2C, TRIM31 or PD-L1 gene silencing effectively suppressed MEF2C K63-linked polyubiquitination, PD-L1 induction and NSCLC growth in mice inoculated with Lewis lung cancer (LLC) cells transfected with the corresponding shRNA and treated with IL-17.</p><p><strong>Conclusion: </strong>IL-17 induces PD-L1 gene transcription in NSCLC cells through TRIM31-dependent MEF2C K63-linked polyubiquitination.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"81"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731414/pdf/","citationCount":"0","resultStr":"{\"title\":\"IL-17 triggers PD-L1 gene transcription in NSCLC cells via TRIM31-dependent MEF2C K63-linked polyubiquitination.\",\"authors\":\"Shuai Ying, Ningxia Wu, Yuting Ruan, Wen Ge, Pei Ma, Tongpeng Xu, Yongqian Shu, Yingwei Wang, Wen Qiu, Chenhui Zhao\",\"doi\":\"10.1186/s12885-025-13473-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.</p><p><strong>Methods: </strong>RT‒PCR, real-time PCR, and IB were used to assess the levels of PD-L1, MEF2C, and TRIM31 in NSCLC tissues as well as in IL-17-stimulated H1299 or PC9 cells. Bioinformatics analysis, luciferase assays, and ChIP were utilized to investigate the transcriptional mechanism of the PD-L1 gene. Co-IP/IB was used to examine the interaction between MEF2C and PD-L1, including MEF2C ubiquitination. IHC staining was carried out to analyse the expression of IL-17RA, MEF2C, TRIM31, and PD-L1 in NSCLC tissue arrays. The corresponding plasmids were constructed and identified. An isograft model was used to verify the findings in vitro.</p><p><strong>Results: </strong>PD-L1, MEF2C and TRIM31 expression levels were increased in NSCLC tissues and NSCLC cells exposed to IL-17. Mechanistically, MEF2C could bind to the - 778 to -475 nt and - 336 to -97 nt regions of the PD-L1 promoter. TRIM31 could mediate MEF2C K63-linked polyubiquitination at Lys 25, increasing MEF2C recruitment to the PD-L1 promoter and PD-L1 gene transcription. MEF2C, TRIM31 or PD-L1 gene silencing effectively suppressed MEF2C K63-linked polyubiquitination, PD-L1 induction and NSCLC growth in mice inoculated with Lewis lung cancer (LLC) cells transfected with the corresponding shRNA and treated with IL-17.</p><p><strong>Conclusion: </strong>IL-17 induces PD-L1 gene transcription in NSCLC cells through TRIM31-dependent MEF2C K63-linked polyubiquitination.</p>\",\"PeriodicalId\":9131,\"journal\":{\"name\":\"BMC Cancer\",\"volume\":\"25 1\",\"pages\":\"81\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12885-025-13473-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13473-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
IL-17 triggers PD-L1 gene transcription in NSCLC cells via TRIM31-dependent MEF2C K63-linked polyubiquitination.
Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.
Methods: RT‒PCR, real-time PCR, and IB were used to assess the levels of PD-L1, MEF2C, and TRIM31 in NSCLC tissues as well as in IL-17-stimulated H1299 or PC9 cells. Bioinformatics analysis, luciferase assays, and ChIP were utilized to investigate the transcriptional mechanism of the PD-L1 gene. Co-IP/IB was used to examine the interaction between MEF2C and PD-L1, including MEF2C ubiquitination. IHC staining was carried out to analyse the expression of IL-17RA, MEF2C, TRIM31, and PD-L1 in NSCLC tissue arrays. The corresponding plasmids were constructed and identified. An isograft model was used to verify the findings in vitro.
Results: PD-L1, MEF2C and TRIM31 expression levels were increased in NSCLC tissues and NSCLC cells exposed to IL-17. Mechanistically, MEF2C could bind to the - 778 to -475 nt and - 336 to -97 nt regions of the PD-L1 promoter. TRIM31 could mediate MEF2C K63-linked polyubiquitination at Lys 25, increasing MEF2C recruitment to the PD-L1 promoter and PD-L1 gene transcription. MEF2C, TRIM31 or PD-L1 gene silencing effectively suppressed MEF2C K63-linked polyubiquitination, PD-L1 induction and NSCLC growth in mice inoculated with Lewis lung cancer (LLC) cells transfected with the corresponding shRNA and treated with IL-17.
Conclusion: IL-17 induces PD-L1 gene transcription in NSCLC cells through TRIM31-dependent MEF2C K63-linked polyubiquitination.
期刊介绍:
BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.