{"title":"双黄连的致敏性和抗过敏性研究进展。","authors":"Xin Jiang, Ji Li, Xiaohui Yao, Hao Ding","doi":"10.2174/0113862073328626241107044327","DOIUrl":null,"url":null,"abstract":"<p><p>Shuanghuanglian (SHL) and its primary constituents have demonstrated protective effects against allergenic diseases. This review examines the anaphylactic and anti-allergenic activities of SHL and its constituents. We also discuss potential avenues for future research, particularly regarding the expansion of the clinical applications of SHL formulations (oral or nebulized) for the treatment of allergenic disorders. For this review, we searched the PubMed, Web of Science, and China National Knowledge Infrastructure databases for relevant publications. Additionally, details of the essential active components and target genes of SHL were obtained from the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), and information on allergy-related genes was collected from the GeneCards and Online Mendelian Inheritance in Man(OMIM) databases. Lists of both the SHL target and disease-related genes were imported into the 'Draw Venn Diagram' tool on the website (http://bioinformatics.psb.ugen /web tools/Venn/). A protein-protein interaction network for SHL and disease targets was constructed with reference to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the potential pathways were identified based on Kyoto Encyclopaedia of Genes and Genome enrichment analyses. The allergenic reactions induced by SHL injection (intravenous) and its main constituents (intraperitoneal or intravenous injection) have been verified in animal experiments. Furthermore, the protective effects of SHL injection (intraperitoneal) and its individual Chinese herb components (intragastric administration), namely, Flos Lonicerae, Radix Scutellariae, and Fructus Forsythiae, as well as their main constituents (intraperitoneal or intragastric administration), have been verified in asthma, rhinitis, atopic dermatitis, and both IgE- and non-IgE-mediated systemic allergic responses. The network pharmacology analysis revealed that the therapeutic effects of SHL might be primarily mediated through the regulation of the IL-17 and TNF-α signalling pathways and Th17 cell differentiation. Accumulated research data provide a theoretical basis for the clinical application of SHL (via extravascular routes) in the treatment of allergenic diseases.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Anaphylactic and Anti-allergenic Properties of Shuanghuanglian: A Review.\",\"authors\":\"Xin Jiang, Ji Li, Xiaohui Yao, Hao Ding\",\"doi\":\"10.2174/0113862073328626241107044327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shuanghuanglian (SHL) and its primary constituents have demonstrated protective effects against allergenic diseases. This review examines the anaphylactic and anti-allergenic activities of SHL and its constituents. We also discuss potential avenues for future research, particularly regarding the expansion of the clinical applications of SHL formulations (oral or nebulized) for the treatment of allergenic disorders. For this review, we searched the PubMed, Web of Science, and China National Knowledge Infrastructure databases for relevant publications. Additionally, details of the essential active components and target genes of SHL were obtained from the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), and information on allergy-related genes was collected from the GeneCards and Online Mendelian Inheritance in Man(OMIM) databases. Lists of both the SHL target and disease-related genes were imported into the 'Draw Venn Diagram' tool on the website (http://bioinformatics.psb.ugen /web tools/Venn/). A protein-protein interaction network for SHL and disease targets was constructed with reference to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the potential pathways were identified based on Kyoto Encyclopaedia of Genes and Genome enrichment analyses. The allergenic reactions induced by SHL injection (intravenous) and its main constituents (intraperitoneal or intravenous injection) have been verified in animal experiments. Furthermore, the protective effects of SHL injection (intraperitoneal) and its individual Chinese herb components (intragastric administration), namely, Flos Lonicerae, Radix Scutellariae, and Fructus Forsythiae, as well as their main constituents (intraperitoneal or intragastric administration), have been verified in asthma, rhinitis, atopic dermatitis, and both IgE- and non-IgE-mediated systemic allergic responses. The network pharmacology analysis revealed that the therapeutic effects of SHL might be primarily mediated through the regulation of the IL-17 and TNF-α signalling pathways and Th17 cell differentiation. Accumulated research data provide a theoretical basis for the clinical application of SHL (via extravascular routes) in the treatment of allergenic diseases.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073328626241107044327\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073328626241107044327","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
双黄连及其主要成分已被证实对过敏性疾病具有保护作用。本文综述了SHL及其成分的过敏和抗过敏活性。我们还讨论了未来研究的潜在途径,特别是关于扩大SHL制剂(口服或雾化)用于治疗过敏性疾病的临床应用。在这篇综述中,我们检索了PubMed、Web of Science和中国国家知识基础设施数据库中相关的出版物。此外,从中药系统药理学数据库(TCMSP)中获得SHL的主要活性成分和靶基因的详细信息,并从GeneCards和在线孟德尔遗传(OMIM)数据库中收集过敏相关基因的信息。将SHL靶基因和疾病相关基因的列表导入网站(http://bioinformatics.psb)上的“绘制维恩图”工具。ugen /web tools/Venn/)。参考相互作用基因/蛋白质检索工具(STRING)数据库构建了SHL与疾病靶点的蛋白-蛋白相互作用网络,并根据京都基因百科全书和基因组富集分析确定了潜在途径。SHL注射液(静脉注射)及其主要成分(腹腔或静脉注射)引起的过敏反应已在动物实验中得到证实。此外,SHL注射液(腹腔)及其单个中药成分(灌胃),即金银花、黄芩和连翘,以及其主要成分(腹腔或灌胃)对哮喘、鼻炎、特应性皮炎以及IgE介导和非IgE介导的全身过敏反应的保护作用已被证实。网络药理学分析显示SHL的治疗作用可能主要通过调节IL-17和TNF-α信号通路和Th17细胞分化介导。积累的研究数据为临床应用SHL(经血管外途径)治疗过敏性疾病提供了理论依据。
The Anaphylactic and Anti-allergenic Properties of Shuanghuanglian: A Review.
Shuanghuanglian (SHL) and its primary constituents have demonstrated protective effects against allergenic diseases. This review examines the anaphylactic and anti-allergenic activities of SHL and its constituents. We also discuss potential avenues for future research, particularly regarding the expansion of the clinical applications of SHL formulations (oral or nebulized) for the treatment of allergenic disorders. For this review, we searched the PubMed, Web of Science, and China National Knowledge Infrastructure databases for relevant publications. Additionally, details of the essential active components and target genes of SHL were obtained from the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), and information on allergy-related genes was collected from the GeneCards and Online Mendelian Inheritance in Man(OMIM) databases. Lists of both the SHL target and disease-related genes were imported into the 'Draw Venn Diagram' tool on the website (http://bioinformatics.psb.ugen /web tools/Venn/). A protein-protein interaction network for SHL and disease targets was constructed with reference to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the potential pathways were identified based on Kyoto Encyclopaedia of Genes and Genome enrichment analyses. The allergenic reactions induced by SHL injection (intravenous) and its main constituents (intraperitoneal or intravenous injection) have been verified in animal experiments. Furthermore, the protective effects of SHL injection (intraperitoneal) and its individual Chinese herb components (intragastric administration), namely, Flos Lonicerae, Radix Scutellariae, and Fructus Forsythiae, as well as their main constituents (intraperitoneal or intragastric administration), have been verified in asthma, rhinitis, atopic dermatitis, and both IgE- and non-IgE-mediated systemic allergic responses. The network pharmacology analysis revealed that the therapeutic effects of SHL might be primarily mediated through the regulation of the IL-17 and TNF-α signalling pathways and Th17 cell differentiation. Accumulated research data provide a theoretical basis for the clinical application of SHL (via extravascular routes) in the treatment of allergenic diseases.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.