Alexandra Scott, Anika Paulson, Collin Prill, Klaiten Kermoade, Bailey Newell, Elizabeth A Eckenwiler, Julia C Lemos, Jocelyn M Richard
{"title":"腹侧白斑gaba能神经元驱动雄性大鼠的消耗,而雌性大鼠则没有。","authors":"Alexandra Scott, Anika Paulson, Collin Prill, Klaiten Kermoade, Bailey Newell, Elizabeth A Eckenwiler, Julia C Lemos, Jocelyn M Richard","doi":"10.1523/ENEURO.0245-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis and hedonic and motivational aspects of food and food cues that can drive nonhomeostatic or \"hedonic\" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and food cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP GABA neurons have been implicated in cue-elicited reward-seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used designer receptors exclusively activated by designer drugs to activate VP GABA neurons in nonrestricted male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ventral Pallidal GABAergic Neurons Drive Consumption in Male, But Not Female, Rats.\",\"authors\":\"Alexandra Scott, Anika Paulson, Collin Prill, Klaiten Kermoade, Bailey Newell, Elizabeth A Eckenwiler, Julia C Lemos, Jocelyn M Richard\",\"doi\":\"10.1523/ENEURO.0245-24.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis and hedonic and motivational aspects of food and food cues that can drive nonhomeostatic or \\\"hedonic\\\" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and food cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP GABA neurons have been implicated in cue-elicited reward-seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used designer receptors exclusively activated by designer drugs to activate VP GABA neurons in nonrestricted male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0245-24.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0245-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Ventral Pallidal GABAergic Neurons Drive Consumption in Male, But Not Female, Rats.
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis and hedonic and motivational aspects of food and food cues that can drive nonhomeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and food cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP GABA neurons have been implicated in cue-elicited reward-seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used designer receptors exclusively activated by designer drugs to activate VP GABA neurons in nonrestricted male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.