Yuan-Jie Liu, Qing Liu, Jia-Qi Li, Qian-Wen Ye, Sheng-Yan Yin, Cong Liu, Shen-Lin Liu, Xi Zou, Jin Ji
{"title":"基于Breslow厚度(BT)的综合分析以确定与黑色素瘤发病相关的生物学机制。","authors":"Yuan-Jie Liu, Qing Liu, Jia-Qi Li, Qian-Wen Ye, Sheng-Yan Yin, Cong Liu, Shen-Lin Liu, Xi Zou, Jin Ji","doi":"10.1016/j.intimp.2025.114065","DOIUrl":null,"url":null,"abstract":"<p><p>Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues. Through consensus clustering, we identified two distinct BT phenotypes in melanoma, which exhibited significant differences in clinical, genomic, and immune infiltration characteristics. High BT molecular expression was associated with reduced CD8+ T cell infiltration and poor immunotherapy response, potentially mediated by the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. In vitro experiments confirmed that BT molecules, including TRIM29, SERPINB5, and RAB25, promoted melanoma development through distinct mechanisms. Notably, fibroblast-derived TRIM29 and B-cell-derived RAB25 interacted with SPP1+ monocytes/macrophages via different pathways. Our findings suggest that genomic variations leading to imbalanced expression of BT molecules across cancers contribute to increased BT, which is closely linked to an immunosuppressive microenvironment. The involvement of multiple cell types and complex intercellular interactions underscores the importance of evaluating dynamic cellular crosstalk in the tumor microenvironment to better understand BT increases and develop more effective immunotherapeutic strategies.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"114065"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Breslow thickness (BT)-based analysis to identify biological mechanisms associated with melanoma pathogenesis.\",\"authors\":\"Yuan-Jie Liu, Qing Liu, Jia-Qi Li, Qian-Wen Ye, Sheng-Yan Yin, Cong Liu, Shen-Lin Liu, Xi Zou, Jin Ji\",\"doi\":\"10.1016/j.intimp.2025.114065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues. Through consensus clustering, we identified two distinct BT phenotypes in melanoma, which exhibited significant differences in clinical, genomic, and immune infiltration characteristics. High BT molecular expression was associated with reduced CD8+ T cell infiltration and poor immunotherapy response, potentially mediated by the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. In vitro experiments confirmed that BT molecules, including TRIM29, SERPINB5, and RAB25, promoted melanoma development through distinct mechanisms. Notably, fibroblast-derived TRIM29 and B-cell-derived RAB25 interacted with SPP1+ monocytes/macrophages via different pathways. Our findings suggest that genomic variations leading to imbalanced expression of BT molecules across cancers contribute to increased BT, which is closely linked to an immunosuppressive microenvironment. The involvement of multiple cell types and complex intercellular interactions underscores the importance of evaluating dynamic cellular crosstalk in the tumor microenvironment to better understand BT increases and develop more effective immunotherapeutic strategies.</p>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"147 \",\"pages\":\"114065\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.intimp.2025.114065\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2025.114065","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Comprehensive Breslow thickness (BT)-based analysis to identify biological mechanisms associated with melanoma pathogenesis.
Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues. Through consensus clustering, we identified two distinct BT phenotypes in melanoma, which exhibited significant differences in clinical, genomic, and immune infiltration characteristics. High BT molecular expression was associated with reduced CD8+ T cell infiltration and poor immunotherapy response, potentially mediated by the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. In vitro experiments confirmed that BT molecules, including TRIM29, SERPINB5, and RAB25, promoted melanoma development through distinct mechanisms. Notably, fibroblast-derived TRIM29 and B-cell-derived RAB25 interacted with SPP1+ monocytes/macrophages via different pathways. Our findings suggest that genomic variations leading to imbalanced expression of BT molecules across cancers contribute to increased BT, which is closely linked to an immunosuppressive microenvironment. The involvement of multiple cell types and complex intercellular interactions underscores the importance of evaluating dynamic cellular crosstalk in the tumor microenvironment to better understand BT increases and develop more effective immunotherapeutic strategies.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.