{"title":"一种弯曲结构驱动的低频宽带环形换能器。","authors":"Xuejian Xia, Yu Lan, Tianfang Zhou","doi":"10.1121/10.0034843","DOIUrl":null,"url":null,"abstract":"<p><p>The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies. It concurrently enhances the intensity of the sound source. Moreover, the acoustic radiation structure is designed to operate with two resonances that can be coupled with each other to extend the bandwidth of the transducer. A finite element model of the low-frequency broadband ring transducer was developed, and its structural parameters were optimized to achieve the optimal bandwidth. The optimization of the transducer was followed by the fabrication of its prototype, which was then used to evaluate its underwater acoustic performance. The results of measurements showed that the proposed transducer could successfully couple two modes of vibrations to yield an in-band fluctuation of approximately 12 dB in the range of frequencies of 540 to 1580 Hz.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 1","pages":"203-214"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low-frequency broadband ring transducer driven by the flextensional structure.\",\"authors\":\"Xuejian Xia, Yu Lan, Tianfang Zhou\",\"doi\":\"10.1121/10.0034843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies. It concurrently enhances the intensity of the sound source. Moreover, the acoustic radiation structure is designed to operate with two resonances that can be coupled with each other to extend the bandwidth of the transducer. A finite element model of the low-frequency broadband ring transducer was developed, and its structural parameters were optimized to achieve the optimal bandwidth. The optimization of the transducer was followed by the fabrication of its prototype, which was then used to evaluate its underwater acoustic performance. The results of measurements showed that the proposed transducer could successfully couple two modes of vibrations to yield an in-band fluctuation of approximately 12 dB in the range of frequencies of 540 to 1580 Hz.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"157 1\",\"pages\":\"203-214\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034843\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034843","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
A low-frequency broadband ring transducer driven by the flextensional structure.
The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies. It concurrently enhances the intensity of the sound source. Moreover, the acoustic radiation structure is designed to operate with two resonances that can be coupled with each other to extend the bandwidth of the transducer. A finite element model of the low-frequency broadband ring transducer was developed, and its structural parameters were optimized to achieve the optimal bandwidth. The optimization of the transducer was followed by the fabrication of its prototype, which was then used to evaluate its underwater acoustic performance. The results of measurements showed that the proposed transducer could successfully couple two modes of vibrations to yield an in-band fluctuation of approximately 12 dB in the range of frequencies of 540 to 1580 Hz.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.