Jihoon Kim, Yingshun Cui, Kyong-Hee Nam, Jun-Woo Lee, Jong-Geol Kim, Seong-Jun Chun
{"title":"作为关键物种的微生物通才:构建12种不同野生植物花坛核心网络模块。","authors":"Jihoon Kim, Yingshun Cui, Kyong-Hee Nam, Jun-Woo Lee, Jong-Geol Kim, Seong-Jun Chun","doi":"10.1186/s40793-025-00666-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.</p><p><strong>Results: </strong>The microbial diversity of the anthosphere showed plant dependence, with the highest diversity observed in Forsythia koreana, indicating microbial dynamics in relation to plant species. Caulobacter, Sphingomonas, Achromobacter, Epicoccum, Cladosporium, and Alternaria were anthosphere generalists, suggesting that the local plant anthosphere had a similar microbial composition. Ecological network analysis revealed that anthosphere generalists were tightly coupled to each other and constructed core modules in the anthosphere. Functions associated with parasites and pathogens were commonly observed in the anthosphere, particularly in Capsella bursa-pastoris and Brassica juncea.</p><p><strong>Conclusion: </strong>Overall, the anthosphere depends on the plant species and microbial generalists function as keystone species to support and connect the anthospheric microbiome in natural habitats.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"6"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbial generalists as keystone species: constructing core network modules in the anthosphere of twelve diverse wild plant species.\",\"authors\":\"Jihoon Kim, Yingshun Cui, Kyong-Hee Nam, Jun-Woo Lee, Jong-Geol Kim, Seong-Jun Chun\",\"doi\":\"10.1186/s40793-025-00666-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.</p><p><strong>Results: </strong>The microbial diversity of the anthosphere showed plant dependence, with the highest diversity observed in Forsythia koreana, indicating microbial dynamics in relation to plant species. Caulobacter, Sphingomonas, Achromobacter, Epicoccum, Cladosporium, and Alternaria were anthosphere generalists, suggesting that the local plant anthosphere had a similar microbial composition. Ecological network analysis revealed that anthosphere generalists were tightly coupled to each other and constructed core modules in the anthosphere. Functions associated with parasites and pathogens were commonly observed in the anthosphere, particularly in Capsella bursa-pastoris and Brassica juncea.</p><p><strong>Conclusion: </strong>Overall, the anthosphere depends on the plant species and microbial generalists function as keystone species to support and connect the anthospheric microbiome in natural habitats.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"20 1\",\"pages\":\"6\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-025-00666-w\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00666-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Microbial generalists as keystone species: constructing core network modules in the anthosphere of twelve diverse wild plant species.
Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.
Results: The microbial diversity of the anthosphere showed plant dependence, with the highest diversity observed in Forsythia koreana, indicating microbial dynamics in relation to plant species. Caulobacter, Sphingomonas, Achromobacter, Epicoccum, Cladosporium, and Alternaria were anthosphere generalists, suggesting that the local plant anthosphere had a similar microbial composition. Ecological network analysis revealed that anthosphere generalists were tightly coupled to each other and constructed core modules in the anthosphere. Functions associated with parasites and pathogens were commonly observed in the anthosphere, particularly in Capsella bursa-pastoris and Brassica juncea.
Conclusion: Overall, the anthosphere depends on the plant species and microbial generalists function as keystone species to support and connect the anthospheric microbiome in natural habitats.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.