Paul N Zivich, Jessie K Edwards, Bonnie E Shook-Sa, Eric T Lofgren, Justin Lessler, Stephen R Cole
{"title":"连续协变量具有正违反的可运性的综合估计。","authors":"Paul N Zivich, Jessie K Edwards, Bonnie E Shook-Sa, Eric T Lofgren, Justin Lessler, Stephen R Cole","doi":"10.1093/jrsssa/qnae084","DOIUrl":null,"url":null,"abstract":"<p><p>Studies intended to estimate the effect of a treatment, like randomized trials, may not be sampled from the desired target population. To correct for this discrepancy, estimates can be transported to the target population. Methods for transporting between populations are often premised on a positivity assumption, such that all relevant covariate patterns in one population are also present in the other. However, eligibility criteria, particularly in the case of trials, can result in violations of positivity when transporting to external populations. To address nonpositivity, a synthesis of statistical and mathematical models can be considered. This approach integrates multiple data sources (e.g. trials, observational, pharmacokinetic studies) to estimate treatment effects, leveraging mathematical models to handle positivity violations. This approach was previously demonstrated for positivity violations by a single binary covariate. Here, we extend the synthesis approach for positivity violations with a continuous covariate. For estimation, two novel augmented inverse probability weighting estimators are proposed. Both estimators are contrasted with other common approaches for addressing nonpositivity. Empirical performance is compared via Monte Carlo simulation. Finally, the competing approaches are illustrated with an example in the context of two-drug vs. one-drug antiretroviral therapy on CD4 T cell counts among women with HIV.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":"188 1","pages":"158-180"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728055/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis estimators for transportability with positivity violations by a continuous covariate.\",\"authors\":\"Paul N Zivich, Jessie K Edwards, Bonnie E Shook-Sa, Eric T Lofgren, Justin Lessler, Stephen R Cole\",\"doi\":\"10.1093/jrsssa/qnae084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies intended to estimate the effect of a treatment, like randomized trials, may not be sampled from the desired target population. To correct for this discrepancy, estimates can be transported to the target population. Methods for transporting between populations are often premised on a positivity assumption, such that all relevant covariate patterns in one population are also present in the other. However, eligibility criteria, particularly in the case of trials, can result in violations of positivity when transporting to external populations. To address nonpositivity, a synthesis of statistical and mathematical models can be considered. This approach integrates multiple data sources (e.g. trials, observational, pharmacokinetic studies) to estimate treatment effects, leveraging mathematical models to handle positivity violations. This approach was previously demonstrated for positivity violations by a single binary covariate. Here, we extend the synthesis approach for positivity violations with a continuous covariate. For estimation, two novel augmented inverse probability weighting estimators are proposed. Both estimators are contrasted with other common approaches for addressing nonpositivity. Empirical performance is compared via Monte Carlo simulation. Finally, the competing approaches are illustrated with an example in the context of two-drug vs. one-drug antiretroviral therapy on CD4 T cell counts among women with HIV.</p>\",\"PeriodicalId\":49983,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"volume\":\"188 1\",\"pages\":\"158-180\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnae084\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnae084","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Synthesis estimators for transportability with positivity violations by a continuous covariate.
Studies intended to estimate the effect of a treatment, like randomized trials, may not be sampled from the desired target population. To correct for this discrepancy, estimates can be transported to the target population. Methods for transporting between populations are often premised on a positivity assumption, such that all relevant covariate patterns in one population are also present in the other. However, eligibility criteria, particularly in the case of trials, can result in violations of positivity when transporting to external populations. To address nonpositivity, a synthesis of statistical and mathematical models can be considered. This approach integrates multiple data sources (e.g. trials, observational, pharmacokinetic studies) to estimate treatment effects, leveraging mathematical models to handle positivity violations. This approach was previously demonstrated for positivity violations by a single binary covariate. Here, we extend the synthesis approach for positivity violations with a continuous covariate. For estimation, two novel augmented inverse probability weighting estimators are proposed. Both estimators are contrasted with other common approaches for addressing nonpositivity. Empirical performance is compared via Monte Carlo simulation. Finally, the competing approaches are illustrated with an example in the context of two-drug vs. one-drug antiretroviral therapy on CD4 T cell counts among women with HIV.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.