Sumanta Roy , Dibakar Roy Sarkar , Chandrasekhar Annavarapu , Pratanu Roy , Brice Lecampion , Dakshina Murthy Valiveti
{"title":"瞬态扩散的自适应接口- pinn (adai - pinn):在非均质介质中正反问题中的应用","authors":"Sumanta Roy , Dibakar Roy Sarkar , Chandrasekhar Annavarapu , Pratanu Roy , Brice Lecampion , Dakshina Murthy Valiveti","doi":"10.1016/j.finel.2024.104305","DOIUrl":null,"url":null,"abstract":"<div><div>We model transient diffusion in heterogeneous materials using a novel physics-informed neural networks framework (PINNs) termed Adaptive interface physics-informed neural networks or AdaI-PINNs (Roy et al. arXiv preprint arXiv:2406.04626, 2024). AdaI-PINNs utilize different activation functions with trainable slopes tailored to each material region within the computational domain, allowing for a fully automated and adaptive PINNs approach to model interface problems with strongly and weakly discontinuous solutions. To enhance its performance in highly heterogeneous transient diffusion systems, we prescribe a suite of robust practices, including appropriate non-dimensionalization of equations, a biased sampling method, Glorot initialization, and the hard enforcement of boundary and initial conditions. We evaluate the efficacy of the proposed method on several benchmark forward and inverse problems. Comparative studies on one-dimensional and two-dimensional benchmark problems reveal that the modified AdaI-PINNs outperform its unmodified counterpart, achieving root-mean-square errors that are at least two orders of magnitude better in forward problems. For inverse problems, the maximum errors in the approximated diffusion coefficients by modified AdaI-PINNs are four orders of magnitude better than those of the unmodified version. Additionally, modified AdaI-PINNs demonstrate improved stability in problems with large material mismatches.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104305"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Interface-PINNs (AdaI-PINNs) for transient diffusion: Applications to forward and inverse problems in heterogeneous media\",\"authors\":\"Sumanta Roy , Dibakar Roy Sarkar , Chandrasekhar Annavarapu , Pratanu Roy , Brice Lecampion , Dakshina Murthy Valiveti\",\"doi\":\"10.1016/j.finel.2024.104305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We model transient diffusion in heterogeneous materials using a novel physics-informed neural networks framework (PINNs) termed Adaptive interface physics-informed neural networks or AdaI-PINNs (Roy et al. arXiv preprint arXiv:2406.04626, 2024). AdaI-PINNs utilize different activation functions with trainable slopes tailored to each material region within the computational domain, allowing for a fully automated and adaptive PINNs approach to model interface problems with strongly and weakly discontinuous solutions. To enhance its performance in highly heterogeneous transient diffusion systems, we prescribe a suite of robust practices, including appropriate non-dimensionalization of equations, a biased sampling method, Glorot initialization, and the hard enforcement of boundary and initial conditions. We evaluate the efficacy of the proposed method on several benchmark forward and inverse problems. Comparative studies on one-dimensional and two-dimensional benchmark problems reveal that the modified AdaI-PINNs outperform its unmodified counterpart, achieving root-mean-square errors that are at least two orders of magnitude better in forward problems. For inverse problems, the maximum errors in the approximated diffusion coefficients by modified AdaI-PINNs are four orders of magnitude better than those of the unmodified version. Additionally, modified AdaI-PINNs demonstrate improved stability in problems with large material mismatches.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"244 \",\"pages\":\"Article 104305\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001999\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001999","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Adaptive Interface-PINNs (AdaI-PINNs) for transient diffusion: Applications to forward and inverse problems in heterogeneous media
We model transient diffusion in heterogeneous materials using a novel physics-informed neural networks framework (PINNs) termed Adaptive interface physics-informed neural networks or AdaI-PINNs (Roy et al. arXiv preprint arXiv:2406.04626, 2024). AdaI-PINNs utilize different activation functions with trainable slopes tailored to each material region within the computational domain, allowing for a fully automated and adaptive PINNs approach to model interface problems with strongly and weakly discontinuous solutions. To enhance its performance in highly heterogeneous transient diffusion systems, we prescribe a suite of robust practices, including appropriate non-dimensionalization of equations, a biased sampling method, Glorot initialization, and the hard enforcement of boundary and initial conditions. We evaluate the efficacy of the proposed method on several benchmark forward and inverse problems. Comparative studies on one-dimensional and two-dimensional benchmark problems reveal that the modified AdaI-PINNs outperform its unmodified counterpart, achieving root-mean-square errors that are at least two orders of magnitude better in forward problems. For inverse problems, the maximum errors in the approximated diffusion coefficients by modified AdaI-PINNs are four orders of magnitude better than those of the unmodified version. Additionally, modified AdaI-PINNs demonstrate improved stability in problems with large material mismatches.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.