田间土壤提取能捕获更多在短期储存中丢失的氨基酸

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-01-12 DOI:10.1016/j.geoderma.2025.117163
Scott Buckley, Sandra Jämtgård
{"title":"田间土壤提取能捕获更多在短期储存中丢失的氨基酸","authors":"Scott Buckley, Sandra Jämtgård","doi":"10.1016/j.geoderma.2025.117163","DOIUrl":null,"url":null,"abstract":"Aqueous soil extraction is a commonly used method to extract nitrogen (N) from soil. However, the disturbance of collection, transportation, and storage before extraction can potentially lead to mineralisation of extractable organic N pools, and as such may bias our interpretations of plant-available N towards inorganic N. Although disturbance through soil collection cannot be avoided, we evaluated the impact of short-term soil storage on water-extractable N pools, by extracting soils samples immediately after removal in the field, and again after overnight storage and extraction in the laboratory 24 h later. We chose five boreal forest soil sites within the Svartberget Research Area (northern Sweden). Soils were sampled across three seasonal time-points from June to September. We found that when measurements across all sites and time points were pooled, field-based extractions had significantly greater amino acid concentrations than lab-based extractions, contributing to greater soluble N concentrations (field extractions: 0.77 ± 0.07 µmol N/g soil DW; lab extractions: 0.17 ± 0.03 µmol N/g soil DW). Seasonal and site variation of amino acid concentrations was also much larger when soils were extracted in the field. Within sites, ammonium was often slightly elevated in lab-based extractions, but not to the same magnitude as reductions in amino acid concentrations, which we interpret as an overall N immobilisation effect during storage, likely through a combined effect of microbial utilisation of amino acids, and adsorption to the soil mineral phase. We found that negatively-charged and polar amino acid concentrations were most affected by storage – but the magnitude of loss of most amino acids was generally similar. Hydrolytic enzyme activity was correlated with total protein concentrations across all sites, this association was strongest in June, but was correlated equally with both lab and field extractions. In contrast, enzyme activity was not well associated with amino acids, regardless of extraction type, indicating that hydrolytic enzyme activity does not fully explain our observations of amino acids concentrations. We conclude that field extractions are a cheap and efficient way to capture higher resolution within organic N profiles of boreal soils during sampling, unmasking information that might be lost during storage.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"3 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field-based soil extractions capture more amino acids that are lost during short-term storage\",\"authors\":\"Scott Buckley, Sandra Jämtgård\",\"doi\":\"10.1016/j.geoderma.2025.117163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous soil extraction is a commonly used method to extract nitrogen (N) from soil. However, the disturbance of collection, transportation, and storage before extraction can potentially lead to mineralisation of extractable organic N pools, and as such may bias our interpretations of plant-available N towards inorganic N. Although disturbance through soil collection cannot be avoided, we evaluated the impact of short-term soil storage on water-extractable N pools, by extracting soils samples immediately after removal in the field, and again after overnight storage and extraction in the laboratory 24 h later. We chose five boreal forest soil sites within the Svartberget Research Area (northern Sweden). Soils were sampled across three seasonal time-points from June to September. We found that when measurements across all sites and time points were pooled, field-based extractions had significantly greater amino acid concentrations than lab-based extractions, contributing to greater soluble N concentrations (field extractions: 0.77 ± 0.07 µmol N/g soil DW; lab extractions: 0.17 ± 0.03 µmol N/g soil DW). Seasonal and site variation of amino acid concentrations was also much larger when soils were extracted in the field. Within sites, ammonium was often slightly elevated in lab-based extractions, but not to the same magnitude as reductions in amino acid concentrations, which we interpret as an overall N immobilisation effect during storage, likely through a combined effect of microbial utilisation of amino acids, and adsorption to the soil mineral phase. We found that negatively-charged and polar amino acid concentrations were most affected by storage – but the magnitude of loss of most amino acids was generally similar. Hydrolytic enzyme activity was correlated with total protein concentrations across all sites, this association was strongest in June, but was correlated equally with both lab and field extractions. In contrast, enzyme activity was not well associated with amino acids, regardless of extraction type, indicating that hydrolytic enzyme activity does not fully explain our observations of amino acids concentrations. We conclude that field extractions are a cheap and efficient way to capture higher resolution within organic N profiles of boreal soils during sampling, unmasking information that might be lost during storage.\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.geoderma.2025.117163\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2025.117163","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤水萃取法是从土壤中提取氮的一种常用方法。然而,提取前的收集、运输和储存的干扰可能会导致可提取有机氮库的矿化,因此可能会使我们对植物有效氮的解释偏向无机氮。尽管土壤收集的干扰无法避免,但我们评估了短期土壤储存对水可提取氮库的影响,方法是在现场去除土壤样本后立即提取土壤样本。24小时后再在实验室储存和提取。我们在Svartberget研究区(瑞典北部)选择了五个北方森林土壤点。土壤在6月至9月的三个季节时间点取样。我们发现,当所有地点和时间点的测量结果汇总时,现场提取的氨基酸浓度明显高于实验室提取,导致更高的可溶性N浓度(现场提取:0.77±0.07µmol N/g土壤DW;实验室提取:0.17±0.03µmol N/g土壤DW)。在田间提取土壤时,氨基酸浓度的季节和地点变化也大得多。在试验点内,铵在实验室提取中通常略有升高,但与氨基酸浓度的降低幅度不同,我们将其解释为储存期间的整体氮固定效应,可能是通过微生物利用氨基酸和吸附到土壤矿物相的综合效应。我们发现,带负电荷和极性的氨基酸浓度受储存的影响最大,但大多数氨基酸的损失幅度大致相似。水解酶活性与所有位点的总蛋白浓度相关,这种关联在6月份最强,但与实验室和现场提取的相关性相等。相比之下,酶活性与氨基酸没有很好的关联,无论提取类型如何,这表明水解酶活性不能完全解释我们观察到的氨基酸浓度。我们得出的结论是,现场提取是一种廉价而有效的方法,可以在采样过程中捕获更高分辨率的北方土壤有机氮剖面,揭示可能在存储过程中丢失的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Field-based soil extractions capture more amino acids that are lost during short-term storage
Aqueous soil extraction is a commonly used method to extract nitrogen (N) from soil. However, the disturbance of collection, transportation, and storage before extraction can potentially lead to mineralisation of extractable organic N pools, and as such may bias our interpretations of plant-available N towards inorganic N. Although disturbance through soil collection cannot be avoided, we evaluated the impact of short-term soil storage on water-extractable N pools, by extracting soils samples immediately after removal in the field, and again after overnight storage and extraction in the laboratory 24 h later. We chose five boreal forest soil sites within the Svartberget Research Area (northern Sweden). Soils were sampled across three seasonal time-points from June to September. We found that when measurements across all sites and time points were pooled, field-based extractions had significantly greater amino acid concentrations than lab-based extractions, contributing to greater soluble N concentrations (field extractions: 0.77 ± 0.07 µmol N/g soil DW; lab extractions: 0.17 ± 0.03 µmol N/g soil DW). Seasonal and site variation of amino acid concentrations was also much larger when soils were extracted in the field. Within sites, ammonium was often slightly elevated in lab-based extractions, but not to the same magnitude as reductions in amino acid concentrations, which we interpret as an overall N immobilisation effect during storage, likely through a combined effect of microbial utilisation of amino acids, and adsorption to the soil mineral phase. We found that negatively-charged and polar amino acid concentrations were most affected by storage – but the magnitude of loss of most amino acids was generally similar. Hydrolytic enzyme activity was correlated with total protein concentrations across all sites, this association was strongest in June, but was correlated equally with both lab and field extractions. In contrast, enzyme activity was not well associated with amino acids, regardless of extraction type, indicating that hydrolytic enzyme activity does not fully explain our observations of amino acids concentrations. We conclude that field extractions are a cheap and efficient way to capture higher resolution within organic N profiles of boreal soils during sampling, unmasking information that might be lost during storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Seasonal soil water origins and determinants in an alpine hillslope on the northeastern Qinghai-Tibet Plateau Low-severity wildfire prevents catastrophic impacts on fungal communities and soil carbon stability in a fire-affected Douglas-fir ecosystem Thermogravimetric data suggest synergy between different organic fractions and clay in soil structure formation Rhizodeposition stimulates soil carbon decomposition and promotes formation of mineral-associated carbon with increased clay content Mycorrhizal and nutrient controls of carbon sequestration in tropical rainforest soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1