严重哮喘患者痰液中的 c-kit + IL-17A + ILC2 支持 ILC2 向 ILC3 的转分化

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2025-01-15 DOI:10.1126/scitranslmed.ado6649
Xiaotian Ju, Nahal Emami Fard, Anurag Bhalla, Anna Dvorkin-Gheva, Maria Xiao, Katherine Radford, Kayla Zhang, Reina Ditta, John Paul Oliveria, Guillaume Paré, Manali Mukherjee, Parameswaran Nair, Roma Sehmi
{"title":"严重哮喘患者痰液中的 c-kit + IL-17A + ILC2 支持 ILC2 向 ILC3 的转分化","authors":"Xiaotian Ju,&nbsp;Nahal Emami Fard,&nbsp;Anurag Bhalla,&nbsp;Anna Dvorkin-Gheva,&nbsp;Maria Xiao,&nbsp;Katherine Radford,&nbsp;Kayla Zhang,&nbsp;Reina Ditta,&nbsp;John Paul Oliveria,&nbsp;Guillaume Paré,&nbsp;Manali Mukherjee,&nbsp;Parameswaran Nair,&nbsp;Roma Sehmi","doi":"10.1126/scitranslmed.ado6649","DOIUrl":null,"url":null,"abstract":"<div >In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear. Here, we found by flow cytometry that sputum ILC3s are increased in severe asthma with intense airway neutrophilia, whereas equivalently raised sputum ILC2s and ILC3s were found in severe asthma with mixed granulocytic inflammation. Unbiased clustering analyses identified an “intermediate-ILC2” population displaying markers of both ILC2s (prostaglandin D<sub>2</sub> receptor 2; CRTH2, IL-5, and IL-13) and ILC3s (c-kit and IL-17A) that were most abundant in severe asthma with mixed granulocytic airway inflammation. Intermediate ILC2s correlated with airway neutrophilia and were associated with increased amounts of IL-1β and IL-18 in sputum supernatants. Coculture of sort-purified canonical ILC2s with IL-1β and IL-18 in vitro up-regulated c-kit and IL-17A as well as gene expression profiles related to both type 2 and type 17 inflammatory pathways. Together, we have identified an intermediate-ILC2 phenotype in the airways of individuals with severe mixed granulocytic asthma, representing a candidate therapeutic target for controlling neutrophilic airway inflammation.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 781","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A population of c-kit+ IL-17A+ ILC2s in sputum from individuals with severe asthma supports ILC2 to ILC3 trans-differentiation\",\"authors\":\"Xiaotian Ju,&nbsp;Nahal Emami Fard,&nbsp;Anurag Bhalla,&nbsp;Anna Dvorkin-Gheva,&nbsp;Maria Xiao,&nbsp;Katherine Radford,&nbsp;Kayla Zhang,&nbsp;Reina Ditta,&nbsp;John Paul Oliveria,&nbsp;Guillaume Paré,&nbsp;Manali Mukherjee,&nbsp;Parameswaran Nair,&nbsp;Roma Sehmi\",\"doi\":\"10.1126/scitranslmed.ado6649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear. Here, we found by flow cytometry that sputum ILC3s are increased in severe asthma with intense airway neutrophilia, whereas equivalently raised sputum ILC2s and ILC3s were found in severe asthma with mixed granulocytic inflammation. Unbiased clustering analyses identified an “intermediate-ILC2” population displaying markers of both ILC2s (prostaglandin D<sub>2</sub> receptor 2; CRTH2, IL-5, and IL-13) and ILC3s (c-kit and IL-17A) that were most abundant in severe asthma with mixed granulocytic airway inflammation. Intermediate ILC2s correlated with airway neutrophilia and were associated with increased amounts of IL-1β and IL-18 in sputum supernatants. Coculture of sort-purified canonical ILC2s with IL-1β and IL-18 in vitro up-regulated c-kit and IL-17A as well as gene expression profiles related to both type 2 and type 17 inflammatory pathways. Together, we have identified an intermediate-ILC2 phenotype in the airways of individuals with severe mixed granulocytic asthma, representing a candidate therapeutic target for controlling neutrophilic airway inflammation.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"17 781\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.ado6649\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.ado6649","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在强的松依赖性严重哮喘中,不受控制的痰嗜酸性粒细胞增多与2组先天淋巴样细胞(ILC2s)数量增加有关。这些细胞是相对类固醇不敏感的白介素-5 (IL-5)和IL-13的来源,被认为是哮喘病理的关键驱动因素。严重哮喘伴中性粒细胞或混合粒细胞(嗜酸性粒细胞和嗜中性粒细胞)气道炎症,易复发性感染加重,ILC亚群的丰度尚不清楚。本研究中,我们通过流式细胞术发现,伴有气道中性粒细胞增多的严重哮喘患者痰中ILC3s升高,而伴有混合性粒细胞炎症的严重哮喘患者痰中ILC2s和ILC3s升高。无偏聚类分析确定了一个“中间ilc2”群体,显示两种ilc2(前列腺素d2受体2;CRTH2、IL-5和IL-13)和ILC3s (c-kit和IL-17A)在伴有混合粒细胞性气道炎症的严重哮喘中最为丰富。中间ILC2s与气道中性粒细胞增多有关,并与痰上清液中IL-1β和IL-18含量增加有关。纯化的典型ILC2s与IL-1β和IL-18体外共培养上调c-kit和IL-17A以及与2型和17型炎症通路相关的基因表达谱。总之,我们在患有严重混合粒细胞性哮喘的个体的气道中发现了一种中等ilc2表型,代表了控制中性粒细胞性气道炎症的候选治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A population of c-kit+ IL-17A+ ILC2s in sputum from individuals with severe asthma supports ILC2 to ILC3 trans-differentiation
In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear. Here, we found by flow cytometry that sputum ILC3s are increased in severe asthma with intense airway neutrophilia, whereas equivalently raised sputum ILC2s and ILC3s were found in severe asthma with mixed granulocytic inflammation. Unbiased clustering analyses identified an “intermediate-ILC2” population displaying markers of both ILC2s (prostaglandin D2 receptor 2; CRTH2, IL-5, and IL-13) and ILC3s (c-kit and IL-17A) that were most abundant in severe asthma with mixed granulocytic airway inflammation. Intermediate ILC2s correlated with airway neutrophilia and were associated with increased amounts of IL-1β and IL-18 in sputum supernatants. Coculture of sort-purified canonical ILC2s with IL-1β and IL-18 in vitro up-regulated c-kit and IL-17A as well as gene expression profiles related to both type 2 and type 17 inflammatory pathways. Together, we have identified an intermediate-ILC2 phenotype in the airways of individuals with severe mixed granulocytic asthma, representing a candidate therapeutic target for controlling neutrophilic airway inflammation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Coactivation of innate immune suppressive cells induces acquired resistance against combined TLR agonism and PD-1 blockade Tumor extracellular vesicle–derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming In vivo expansion of gene-targeted hepatocytes through transient inhibition of an essential gene Antisense oligonucleotide–mediated MSH3 suppression reduces somatic CAG repeat expansion in Huntington’s disease iPSC–derived striatal neurons Intestinal epithelium–derived IL-34 reprograms macrophages to mitigate gastrointestinal tract graft-versus-host disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1