人胶质母细胞瘤的全脑神经元回路连接组

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-01-16 DOI:10.1038/s41586-025-08634-7
Yusha Sun, Xin Wang, Daniel Y. Zhang, Zhijian Zhang, Janardhan P. Bhattarai, Yingqi Wang, Kristen H. Park, Weifan Dong, Yun-Fen Hung, Qian Yang, Feng Zhang, Keerthi Rajamani, Shang Mu, Benjamin C. Kennedy, Yan Hong, Jamie Galanaugh, Abhijeet Sambangi, Sang Hoon Kim, Garrett Wheeler, Tiago Gonçalves, Qing Wang, Daniel Geschwind, Riki Kawaguchi, Angela N. Viaene, Ingo Helbig, Sudha K. Kessler, Ahmet Hoke, Huadong Wang, Fuqiang Xu, Zev A. Binder, H. Isaac Chen, Emily Ling-Lin Pai, Sara Stone, MacLean P. Nasrallah, Kimberly M. Christian, Marc Fuccillo, Nicolas Toni, Zhuhao Wu, Hwai-Jong Cheng, Donald M. O’Rourke, Minghong Ma, Guo-li Ming, Hongjun Song
{"title":"人胶质母细胞瘤的全脑神经元回路连接组","authors":"Yusha Sun, Xin Wang, Daniel Y. Zhang, Zhijian Zhang, Janardhan P. Bhattarai, Yingqi Wang, Kristen H. Park, Weifan Dong, Yun-Fen Hung, Qian Yang, Feng Zhang, Keerthi Rajamani, Shang Mu, Benjamin C. Kennedy, Yan Hong, Jamie Galanaugh, Abhijeet Sambangi, Sang Hoon Kim, Garrett Wheeler, Tiago Gonçalves, Qing Wang, Daniel Geschwind, Riki Kawaguchi, Angela N. Viaene, Ingo Helbig, Sudha K. Kessler, Ahmet Hoke, Huadong Wang, Fuqiang Xu, Zev A. Binder, H. Isaac Chen, Emily Ling-Lin Pai, Sara Stone, MacLean P. Nasrallah, Kimberly M. Christian, Marc Fuccillo, Nicolas Toni, Zhuhao Wu, Hwai-Jong Cheng, Donald M. O’Rourke, Minghong Ma, Guo-li Ming, Hongjun Song","doi":"10.1038/s41586-025-08634-7","DOIUrl":null,"url":null,"abstract":"<p>Glioblastoma (GBM) infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression<sup>1,2</sup>. Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic<sup>3,4</sup>. The extent of GBM integration into the brain-wide neuronal circuitry remains unclear. Here we applied rabies virus- and herpes simplex virus-mediated trans-monosynaptic tracing<sup>5,6</sup> to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrate into diverse local and long-range neural circuits across the brain. Beyond glutamatergic inputs, we identified various neuromodulatory inputs, including synapses between basal forebrain cholinergic neurons and GBM cells. Acute acetylcholine stimulation induces long-lasting elevation of calcium oscillations and transcriptional reprogramming of GBM cells into a more motile state via the metabotropic CHRM3 receptor. CHRM3 activation promotes GBM cell motility, whereas its downregulation suppresses GBM cell motility and prolongs mouse survival. Together, these results reveal the striking capacity for human GBM cells to rapidly and robustly integrate into anatomically diverse neuronal networks of different neurotransmitter systems. Our findings further support a model wherein rapid connectivity and transient activation of upstream neurons may lead to a long-lasting increase in tumor fitness.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"102 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-wide neuronal circuit connectome of human glioblastoma\",\"authors\":\"Yusha Sun, Xin Wang, Daniel Y. Zhang, Zhijian Zhang, Janardhan P. Bhattarai, Yingqi Wang, Kristen H. Park, Weifan Dong, Yun-Fen Hung, Qian Yang, Feng Zhang, Keerthi Rajamani, Shang Mu, Benjamin C. Kennedy, Yan Hong, Jamie Galanaugh, Abhijeet Sambangi, Sang Hoon Kim, Garrett Wheeler, Tiago Gonçalves, Qing Wang, Daniel Geschwind, Riki Kawaguchi, Angela N. Viaene, Ingo Helbig, Sudha K. Kessler, Ahmet Hoke, Huadong Wang, Fuqiang Xu, Zev A. Binder, H. Isaac Chen, Emily Ling-Lin Pai, Sara Stone, MacLean P. Nasrallah, Kimberly M. Christian, Marc Fuccillo, Nicolas Toni, Zhuhao Wu, Hwai-Jong Cheng, Donald M. O’Rourke, Minghong Ma, Guo-li Ming, Hongjun Song\",\"doi\":\"10.1038/s41586-025-08634-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glioblastoma (GBM) infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression<sup>1,2</sup>. Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic<sup>3,4</sup>. The extent of GBM integration into the brain-wide neuronal circuitry remains unclear. Here we applied rabies virus- and herpes simplex virus-mediated trans-monosynaptic tracing<sup>5,6</sup> to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrate into diverse local and long-range neural circuits across the brain. Beyond glutamatergic inputs, we identified various neuromodulatory inputs, including synapses between basal forebrain cholinergic neurons and GBM cells. Acute acetylcholine stimulation induces long-lasting elevation of calcium oscillations and transcriptional reprogramming of GBM cells into a more motile state via the metabotropic CHRM3 receptor. CHRM3 activation promotes GBM cell motility, whereas its downregulation suppresses GBM cell motility and prolongs mouse survival. Together, these results reveal the striking capacity for human GBM cells to rapidly and robustly integrate into anatomically diverse neuronal networks of different neurotransmitter systems. Our findings further support a model wherein rapid connectivity and transient activation of upstream neurons may lead to a long-lasting increase in tumor fitness.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-08634-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08634-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤(GBM)浸润大脑,可由神经元突触支配,从而驱动肿瘤进展1,2。到目前为止,对GBM细胞的突触输入主要是短程的和谷氨酸能的。GBM整合到全脑神经回路的程度尚不清楚。本研究采用狂犬病毒和单纯疱疹病毒介导的跨单突触追踪技术5,6系统地研究了移植到成年小鼠体内的人GBM类器官的电路整合。我们发现来自多个患者的GBM细胞迅速整合到大脑中不同的局部和远程神经回路中。除了谷氨酸能输入,我们还确定了各种神经调节输入,包括基底前脑胆碱能神经元和GBM细胞之间的突触。急性乙酰胆碱刺激通过促代谢的CHRM3受体诱导钙振荡的长期升高和GBM细胞的转录重编程进入更活跃的状态。CHRM3激活可促进GBM细胞运动,而其下调可抑制GBM细胞运动,延长小鼠生存期。总之,这些结果揭示了人类GBM细胞快速而强大地整合到不同神经递质系统的解剖多样性神经网络的惊人能力。我们的发现进一步支持了一个模型,其中上游神经元的快速连接和短暂激活可能导致肿瘤适应性的长期增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain-wide neuronal circuit connectome of human glioblastoma

Glioblastoma (GBM) infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression1,2. Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic3,4. The extent of GBM integration into the brain-wide neuronal circuitry remains unclear. Here we applied rabies virus- and herpes simplex virus-mediated trans-monosynaptic tracing5,6 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrate into diverse local and long-range neural circuits across the brain. Beyond glutamatergic inputs, we identified various neuromodulatory inputs, including synapses between basal forebrain cholinergic neurons and GBM cells. Acute acetylcholine stimulation induces long-lasting elevation of calcium oscillations and transcriptional reprogramming of GBM cells into a more motile state via the metabotropic CHRM3 receptor. CHRM3 activation promotes GBM cell motility, whereas its downregulation suppresses GBM cell motility and prolongs mouse survival. Together, these results reveal the striking capacity for human GBM cells to rapidly and robustly integrate into anatomically diverse neuronal networks of different neurotransmitter systems. Our findings further support a model wherein rapid connectivity and transient activation of upstream neurons may lead to a long-lasting increase in tumor fitness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Author Correction: Gut microbiota strain richness is species specific and affects engraftment Author Correction: Lithocholic acid phenocopies anti-ageing effects of calorie restriction Author Correction: Continental influx and pervasive matrilocality in Iron Age Britain Industrial projects in Chile threaten clear views of the Universe Why more drilling doesn’t need to mean more harm to the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1