Neves Corvo Cu-Zn-Pb(-Sn)矿床(伊比利亚黄铁矿带)Corvo矿体磷灰石交代和REE迁移的结构、矿物学和地球化学证据

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Mineralium Deposita Pub Date : 2025-01-17 DOI:10.1007/s00126-025-01348-w
Marta S. Codeço, Sarah A. Gleeson, Vitor Barrote, Daniel Harlov, Christof Kusebauch, Monika Koch-Müller, Jorge M. R. S. Relvas, Anja M. Schleicher, Christian Schmidt, Jessica A. Stammeier, Marcin D. Syczewski, Franziska D. H. Wilke
{"title":"Neves Corvo Cu-Zn-Pb(-Sn)矿床(伊比利亚黄铁矿带)Corvo矿体磷灰石交代和REE迁移的结构、矿物学和地球化学证据","authors":"Marta S. Codeço, Sarah A. Gleeson, Vitor Barrote, Daniel Harlov, Christof Kusebauch, Monika Koch-Müller, Jorge M. R. S. Relvas, Anja M. Schleicher, Christian Schmidt, Jessica A. Stammeier, Marcin D. Syczewski, Franziska D. H. Wilke","doi":"10.1007/s00126-025-01348-w","DOIUrl":null,"url":null,"abstract":"<p>The Neves Corvo Cu-Zn-Pb(-Sn) deposit (Portugal) is one of the largest volcanogenic massive sulfide deposits (VMS) worldwide, hosted by Upper Devonian to Early Carboniferous rocks. Originally, it contained an early structurally controlled tin orebody (stockwork and massive cassiterite), which has now been mined out. In this study, we report the first occurrence of phosphate minerals (apatite, florencite, and xenotime) within the tin stockwork at Neves Corvo. We present a high-resolution multi-analytical study using petrographic, mineral chemistry, and whole-rock geochemical methods to understand the genesis of these phosphates and their implications for tin at the Neves Corvo deposit. Our results demonstrate that apatite forms coevally with cassiterite and has low trace element contents except for S, Sr, Y, and MREE (Middle Rare Earth Elements; 10–100 ppm) with a bell-shaped chondrite (C1) normalized REE pattern. We suggest that apatite likely formed as chlorapatite or oxyapatite that was subsequently metasomatized to fluorapatite with minor carbonate during hydrothermal alteration related to sulfide mineralization. The REE pattern of apatite, together with the presence of secondary phosphates (florencite and xenotime), indicates preferential scavenging of REE to form the latter phases due to the interaction with NaCl-rich and, to a minor extent, fluorine-rich fluids in an aluminum-saturated system. This study underscores how the analyses of primary and secondary phosphate minerals can help to track the evolution of the hydrothermal system and partially constrain the fluid composition and fluid-rock interaction processes. Therefore, the approaches outlined here are applicable to any hydrothermal ore-forming system where phosphate phases are formed.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"37 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Textural, mineralogical, and geochemical evidence for apatite metasomatism and REE mobility within the Corvo orebody at the Neves Corvo Cu-Zn-Pb(-Sn) deposit (Iberian Pyrite Belt)\",\"authors\":\"Marta S. Codeço, Sarah A. Gleeson, Vitor Barrote, Daniel Harlov, Christof Kusebauch, Monika Koch-Müller, Jorge M. R. S. Relvas, Anja M. Schleicher, Christian Schmidt, Jessica A. Stammeier, Marcin D. Syczewski, Franziska D. H. Wilke\",\"doi\":\"10.1007/s00126-025-01348-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Neves Corvo Cu-Zn-Pb(-Sn) deposit (Portugal) is one of the largest volcanogenic massive sulfide deposits (VMS) worldwide, hosted by Upper Devonian to Early Carboniferous rocks. Originally, it contained an early structurally controlled tin orebody (stockwork and massive cassiterite), which has now been mined out. In this study, we report the first occurrence of phosphate minerals (apatite, florencite, and xenotime) within the tin stockwork at Neves Corvo. We present a high-resolution multi-analytical study using petrographic, mineral chemistry, and whole-rock geochemical methods to understand the genesis of these phosphates and their implications for tin at the Neves Corvo deposit. Our results demonstrate that apatite forms coevally with cassiterite and has low trace element contents except for S, Sr, Y, and MREE (Middle Rare Earth Elements; 10–100 ppm) with a bell-shaped chondrite (C1) normalized REE pattern. We suggest that apatite likely formed as chlorapatite or oxyapatite that was subsequently metasomatized to fluorapatite with minor carbonate during hydrothermal alteration related to sulfide mineralization. The REE pattern of apatite, together with the presence of secondary phosphates (florencite and xenotime), indicates preferential scavenging of REE to form the latter phases due to the interaction with NaCl-rich and, to a minor extent, fluorine-rich fluids in an aluminum-saturated system. This study underscores how the analyses of primary and secondary phosphate minerals can help to track the evolution of the hydrothermal system and partially constrain the fluid composition and fluid-rock interaction processes. Therefore, the approaches outlined here are applicable to any hydrothermal ore-forming system where phosphate phases are formed.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-025-01348-w\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-025-01348-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

葡萄牙Neves Corvo Cu-Zn-Pb(-Sn)矿床是世界上最大的火山成因块状硫化物矿床之一,赋存于上泥盆统至早石炭世的岩石中。原含早期构造控制锡矿体(网状和块状锡石),现已开采殆尽。在这项研究中,我们报告了在Neves Corvo的锡网中首次发现磷矿物(磷灰石、萤光石和xenotime)。我们利用岩石学、矿物化学和全岩地球化学方法进行了高分辨率的多分析研究,以了解这些磷酸盐的成因及其对Neves Corvo矿床锡的影响。结果表明:磷灰石与锡石共形形成,除S、Sr、Y和MREE(中稀土元素)外,其余微量元素含量较低;10 ~ 100 ppm),呈钟形球粒陨石(C1)归一化稀土模式。我们认为磷灰石可能形成为氯磷灰石或氧磷灰石,随后在与硫化物矿化有关的热液蚀变中变质为含少量碳酸盐的氟磷灰石。磷灰石的稀土元素模式,以及次级磷酸盐(萤光石和xenotime)的存在,表明在铝饱和体系中,由于与富nacl和少量富氟流体的相互作用,稀土元素优先被清除,形成后相。本研究强调了原生和次生磷矿物的分析有助于追踪热液系统的演化,并在一定程度上约束流体组成和流体-岩石相互作用过程。因此,这里概述的方法适用于任何形成磷酸盐相的热液成矿系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Textural, mineralogical, and geochemical evidence for apatite metasomatism and REE mobility within the Corvo orebody at the Neves Corvo Cu-Zn-Pb(-Sn) deposit (Iberian Pyrite Belt)

The Neves Corvo Cu-Zn-Pb(-Sn) deposit (Portugal) is one of the largest volcanogenic massive sulfide deposits (VMS) worldwide, hosted by Upper Devonian to Early Carboniferous rocks. Originally, it contained an early structurally controlled tin orebody (stockwork and massive cassiterite), which has now been mined out. In this study, we report the first occurrence of phosphate minerals (apatite, florencite, and xenotime) within the tin stockwork at Neves Corvo. We present a high-resolution multi-analytical study using petrographic, mineral chemistry, and whole-rock geochemical methods to understand the genesis of these phosphates and their implications for tin at the Neves Corvo deposit. Our results demonstrate that apatite forms coevally with cassiterite and has low trace element contents except for S, Sr, Y, and MREE (Middle Rare Earth Elements; 10–100 ppm) with a bell-shaped chondrite (C1) normalized REE pattern. We suggest that apatite likely formed as chlorapatite or oxyapatite that was subsequently metasomatized to fluorapatite with minor carbonate during hydrothermal alteration related to sulfide mineralization. The REE pattern of apatite, together with the presence of secondary phosphates (florencite and xenotime), indicates preferential scavenging of REE to form the latter phases due to the interaction with NaCl-rich and, to a minor extent, fluorine-rich fluids in an aluminum-saturated system. This study underscores how the analyses of primary and secondary phosphate minerals can help to track the evolution of the hydrothermal system and partially constrain the fluid composition and fluid-rock interaction processes. Therefore, the approaches outlined here are applicable to any hydrothermal ore-forming system where phosphate phases are formed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
期刊最新文献
Apatite as a pathfinder to tin mineralisation: prospects and caveats The mineralogical distribution of Ni in mantle rocks controls the fertility of magmatic Ni-sulfide systems Unravelling the mechanisms underlying marine redox shifts during sedimentary manganese metallogenesis: insights from the Carboniferous Muhu deposit, China Multi-source hydrothermal mineralisation in the ultramafic-hosted Mirae-2 vent field, Central Indian Ridge Tourmaline as a textural, geochemical and isotopic marker of fault valve processes recorded at the Paleoproterozoic Lafigué orogenic gold deposit, Ivory Coast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1