探索能量最小化模型应变局部化作为强不连续使用物理通知神经网络

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2025-01-11 DOI:10.1016/j.cma.2024.117724
Omar León , Víctor Rivera , Angel Vázquez-Patiño , Jacinto Ulloa , Esteban Samaniego
{"title":"探索能量最小化模型应变局部化作为强不连续使用物理通知神经网络","authors":"Omar León ,&nbsp;Víctor Rivera ,&nbsp;Angel Vázquez-Patiño ,&nbsp;Jacinto Ulloa ,&nbsp;Esteban Samaniego","doi":"10.1016/j.cma.2024.117724","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the possibilities of using energy minimization for the numerical modeling of strain localization in solids as a sharp discontinuity in the displacement field. For this purpose, we consider (regularized) strong discontinuity kinematics in elastoplastic solids. The corresponding mathematical model is discretized using Artificial Neural Networks (ANNs), aiming to predict <em>both</em> the magnitude and location of the displacement jump from energy minimization, <em>i.e.</em>, within a variational setting. The architecture takes care of the kinematics, while the loss function takes care of the variational statement of the boundary value problem. The main idea behind this approach is to solve both the equilibrium problem and the location of the localization band by means of trainable parameters in the ANN. As a proof of concept, we show through both 1D and 2D numerical examples that the computational modeling of strain localization for elastoplastic solids using energy minimization is feasible.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117724"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring energy minimization to model strain localization as a strong discontinuity using Physics Informed Neural Networks\",\"authors\":\"Omar León ,&nbsp;Víctor Rivera ,&nbsp;Angel Vázquez-Patiño ,&nbsp;Jacinto Ulloa ,&nbsp;Esteban Samaniego\",\"doi\":\"10.1016/j.cma.2024.117724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the possibilities of using energy minimization for the numerical modeling of strain localization in solids as a sharp discontinuity in the displacement field. For this purpose, we consider (regularized) strong discontinuity kinematics in elastoplastic solids. The corresponding mathematical model is discretized using Artificial Neural Networks (ANNs), aiming to predict <em>both</em> the magnitude and location of the displacement jump from energy minimization, <em>i.e.</em>, within a variational setting. The architecture takes care of the kinematics, while the loss function takes care of the variational statement of the boundary value problem. The main idea behind this approach is to solve both the equilibrium problem and the location of the localization band by means of trainable parameters in the ANN. As a proof of concept, we show through both 1D and 2D numerical examples that the computational modeling of strain localization for elastoplastic solids using energy minimization is feasible.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"436 \",\"pages\":\"Article 117724\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524009800\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524009800","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了在位移场中使用能量最小化进行应变局部化数值模拟的可能性。为此,我们考虑弹塑性固体中的(正则化的)强不连续运动学。利用人工神经网络(ann)对相应的数学模型进行离散化,旨在从能量最小化,即在变分设置下预测位移跳变的大小和位置。体系结构负责运动学,而损失函数负责边值问题的变分表述。该方法的主要思想是利用人工神经网络中的可训练参数来解决平衡问题和定位带的定位问题。作为概念的证明,我们通过一维和二维数值实例表明,使用能量最小化的弹塑性固体应变局部化的计算建模是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring energy minimization to model strain localization as a strong discontinuity using Physics Informed Neural Networks
We explore the possibilities of using energy minimization for the numerical modeling of strain localization in solids as a sharp discontinuity in the displacement field. For this purpose, we consider (regularized) strong discontinuity kinematics in elastoplastic solids. The corresponding mathematical model is discretized using Artificial Neural Networks (ANNs), aiming to predict both the magnitude and location of the displacement jump from energy minimization, i.e., within a variational setting. The architecture takes care of the kinematics, while the loss function takes care of the variational statement of the boundary value problem. The main idea behind this approach is to solve both the equilibrium problem and the location of the localization band by means of trainable parameters in the ANN. As a proof of concept, we show through both 1D and 2D numerical examples that the computational modeling of strain localization for elastoplastic solids using energy minimization is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
A bioinspired multi-layer assembly method for mechanical metamaterials with extreme properties using topology optimization Simultaneous shape and topology optimization on unstructured grids Self-support structure topology optimization for multi-axis additive manufacturing incorporated with curved layer slicing Robust equilibrium optimization method for dynamic characteristics of mechanical structures with hybrid uncertainties Global-local adaptive meshing method for phase-field fracture modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1