Yiyao Li, Daorui Han, Cheryl A. Rogers, Sarah A. Finkelstein, Oleksandra Hararuk, James M. Waddington, Carlos Barreto, James W. McLaughlin, James Snider, Alemu Gonsamo
{"title":"加拿大哈德逊湾低地的泥炭深度和碳储量","authors":"Yiyao Li, Daorui Han, Cheryl A. Rogers, Sarah A. Finkelstein, Oleksandra Hararuk, James M. Waddington, Carlos Barreto, James W. McLaughlin, James Snider, Alemu Gonsamo","doi":"10.1029/2024gl110679","DOIUrl":null,"url":null,"abstract":"The Hudson Bay Lowlands (HBL) are recognized as the second largest peatland complex in the world. Due to variability in peat thickness across a large and heterogeneous landscape, the existing carbon (C) storage estimates for the HBL may contain large uncertainty. Here, we use geospatial variables that are associated with HBL peat formation, age, accumulation, and occurrence to understand the driving factors for peat depth variability and map peat depth and C storage at 30 m spatial resolution. The estimated average peat depth of HBL is 184(±48) cm with 90% of values falling between 89 and 264 cm. Based on the spatially explicit peat depth, the HBL total C storage is estimated to be 30(±6) Pg. Distance to the coastline is the most important indicator of peat depth where the depth increases with distance further away from Hudson Bay coastline, confirming that the time since peat formation is closely related to peat depth.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"96 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peat Depth and Carbon Storage of the Hudson Bay Lowlands, Canada\",\"authors\":\"Yiyao Li, Daorui Han, Cheryl A. Rogers, Sarah A. Finkelstein, Oleksandra Hararuk, James M. Waddington, Carlos Barreto, James W. McLaughlin, James Snider, Alemu Gonsamo\",\"doi\":\"10.1029/2024gl110679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hudson Bay Lowlands (HBL) are recognized as the second largest peatland complex in the world. Due to variability in peat thickness across a large and heterogeneous landscape, the existing carbon (C) storage estimates for the HBL may contain large uncertainty. Here, we use geospatial variables that are associated with HBL peat formation, age, accumulation, and occurrence to understand the driving factors for peat depth variability and map peat depth and C storage at 30 m spatial resolution. The estimated average peat depth of HBL is 184(±48) cm with 90% of values falling between 89 and 264 cm. Based on the spatially explicit peat depth, the HBL total C storage is estimated to be 30(±6) Pg. Distance to the coastline is the most important indicator of peat depth where the depth increases with distance further away from Hudson Bay coastline, confirming that the time since peat formation is closely related to peat depth.\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024gl110679\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl110679","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Peat Depth and Carbon Storage of the Hudson Bay Lowlands, Canada
The Hudson Bay Lowlands (HBL) are recognized as the second largest peatland complex in the world. Due to variability in peat thickness across a large and heterogeneous landscape, the existing carbon (C) storage estimates for the HBL may contain large uncertainty. Here, we use geospatial variables that are associated with HBL peat formation, age, accumulation, and occurrence to understand the driving factors for peat depth variability and map peat depth and C storage at 30 m spatial resolution. The estimated average peat depth of HBL is 184(±48) cm with 90% of values falling between 89 and 264 cm. Based on the spatially explicit peat depth, the HBL total C storage is estimated to be 30(±6) Pg. Distance to the coastline is the most important indicator of peat depth where the depth increases with distance further away from Hudson Bay coastline, confirming that the time since peat formation is closely related to peat depth.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.