纳米和亚纳米尺度上的电动能量收集

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2025-01-17 DOI:10.1063/5.0241150
Suman Chakraborty, Chirodeep Bakli, Debmalya Roy, Abhirup Chaudhuri, Aniruddha Guha, Aditya Patwari
{"title":"纳米和亚纳米尺度上的电动能量收集","authors":"Suman Chakraborty, Chirodeep Bakli, Debmalya Roy, Abhirup Chaudhuri, Aniruddha Guha, Aditya Patwari","doi":"10.1063/5.0241150","DOIUrl":null,"url":null,"abstract":"Electrokinetic energy harvesting (EKEH) has emerged as a promising renewable and carbon-neutral energy source for small and large-scale applications, reducing the reliance on conventional fossil fuels and providing innovative solutions for remote, off-grid applications. The underlying mechanism of EKEH relies on the movement of dissolved electrolytes over charged fluid–solid interfaces through confinements resulting in the generation of useful power. The low energy conversion efficiency typically observed in larger (micrometer) confinements can be substantially mitigated by shifting to nanometer and sub-nanometer regimes. This down-scaling unlocks high selectivity and provides unique opportunities to potentially harness Angstrom-scale interactions to maintain and elevate fluid permeability. However, EKEH at sub-nanometric scales remains fraught with considerable challenges in fabrication, economic viability, scaling of power, and maintenance, significantly impeding its advancement. In this review, we detail the electrokinetic processes that drive energy conversion in the presence of pressure, concentration, and temperature gradients. We examine the key factors affecting conversion efficiency and explore the innovative solutions in the recent literature addressing associated challenges. Additionally, we highlight the role of novel nanomaterials and specialized geometries along with new fabrication techniques that enable high permeation without sacrificing selectivity in nanometer and sub-nanometer confinements. Finally, we delve into the major obstacles that EKEH currently faces to reach its full potential of extracting clean and affordable energy and conclude by offering insight into future developmental directions and potential breakthroughs in this rapidly evolving field.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"70 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrokinetic energy harvesting over nanometer and sub-nanometer scales\",\"authors\":\"Suman Chakraborty, Chirodeep Bakli, Debmalya Roy, Abhirup Chaudhuri, Aniruddha Guha, Aditya Patwari\",\"doi\":\"10.1063/5.0241150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrokinetic energy harvesting (EKEH) has emerged as a promising renewable and carbon-neutral energy source for small and large-scale applications, reducing the reliance on conventional fossil fuels and providing innovative solutions for remote, off-grid applications. The underlying mechanism of EKEH relies on the movement of dissolved electrolytes over charged fluid–solid interfaces through confinements resulting in the generation of useful power. The low energy conversion efficiency typically observed in larger (micrometer) confinements can be substantially mitigated by shifting to nanometer and sub-nanometer regimes. This down-scaling unlocks high selectivity and provides unique opportunities to potentially harness Angstrom-scale interactions to maintain and elevate fluid permeability. However, EKEH at sub-nanometric scales remains fraught with considerable challenges in fabrication, economic viability, scaling of power, and maintenance, significantly impeding its advancement. In this review, we detail the electrokinetic processes that drive energy conversion in the presence of pressure, concentration, and temperature gradients. We examine the key factors affecting conversion efficiency and explore the innovative solutions in the recent literature addressing associated challenges. Additionally, we highlight the role of novel nanomaterials and specialized geometries along with new fabrication techniques that enable high permeation without sacrificing selectivity in nanometer and sub-nanometer confinements. Finally, we delve into the major obstacles that EKEH currently faces to reach its full potential of extracting clean and affordable energy and conclude by offering insight into future developmental directions and potential breakthroughs in this rapidly evolving field.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241150\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0241150","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

电动能收集(EKEH)已成为一种前景广阔的可再生和碳中性能源,可用于小型和大型应用,减少对传统化石燃料的依赖,并为偏远地区的离网应用提供创新解决方案。EKEH 的基本机制依赖于带电流固界面上的溶解电解质通过约束运动,从而产生有用的电能。在较大(微米)的束缚中通常观察到的低能量转换效率,可以通过转向纳米和亚纳米级来大大缓解。这种向下的缩放释放了高选择性,并提供了利用埃级相互作用来保持和提高流体渗透性的独特机会。然而,亚纳米尺度的 EKEH 在制造、经济可行性、功率扩展和维护方面仍面临着巨大挑战,严重阻碍了其发展。在本综述中,我们将详细介绍在压力、浓度和温度梯度条件下驱动能量转换的电动过程。我们研究了影响转换效率的关键因素,并探讨了近期文献中应对相关挑战的创新解决方案。此外,我们还强调了新型纳米材料和特殊几何形状的作用,以及在纳米和亚纳米限制条件下实现高渗透性而不牺牲选择性的新型制造技术。最后,我们深入探讨了 EKEH 目前在充分发挥其提取清洁、廉价能源的潜力方面所面临的主要障碍,并对这一快速发展领域的未来发展方向和潜在突破提出了自己的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrokinetic energy harvesting over nanometer and sub-nanometer scales
Electrokinetic energy harvesting (EKEH) has emerged as a promising renewable and carbon-neutral energy source for small and large-scale applications, reducing the reliance on conventional fossil fuels and providing innovative solutions for remote, off-grid applications. The underlying mechanism of EKEH relies on the movement of dissolved electrolytes over charged fluid–solid interfaces through confinements resulting in the generation of useful power. The low energy conversion efficiency typically observed in larger (micrometer) confinements can be substantially mitigated by shifting to nanometer and sub-nanometer regimes. This down-scaling unlocks high selectivity and provides unique opportunities to potentially harness Angstrom-scale interactions to maintain and elevate fluid permeability. However, EKEH at sub-nanometric scales remains fraught with considerable challenges in fabrication, economic viability, scaling of power, and maintenance, significantly impeding its advancement. In this review, we detail the electrokinetic processes that drive energy conversion in the presence of pressure, concentration, and temperature gradients. We examine the key factors affecting conversion efficiency and explore the innovative solutions in the recent literature addressing associated challenges. Additionally, we highlight the role of novel nanomaterials and specialized geometries along with new fabrication techniques that enable high permeation without sacrificing selectivity in nanometer and sub-nanometer confinements. Finally, we delve into the major obstacles that EKEH currently faces to reach its full potential of extracting clean and affordable energy and conclude by offering insight into future developmental directions and potential breakthroughs in this rapidly evolving field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
Efficient shift of ferromagnetic resonance by superconductor gating Linear flip-chipped resonant-cavity green μLEDs arrays for low-crosstalk optogenetic probes with low damage Inorganic semiconducting nanostructures-based printed photodetectors Application and prospect of in situ TEM in wide bandgap semiconductor materials and devices Optical phonons on thermal conduction in advanced materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1