{"title":"利用地震监测数据的时移分析揭示了伊利诺斯盆地-迪凯特项目中沿断层的二氧化碳迁移","authors":"I. Bukar, R. Bell, A. H. Muggeridge, S. Krevor","doi":"10.1029/2024gl110049","DOIUrl":null,"url":null,"abstract":"Large scale geological storage of CO<sub>2</sub> is being deployed worldwide to reduce greenhouse gas emissions to the atmosphere. Previous modeling studies have investigated the potential for CO<sub>2</sub> migration along faults. We observe such migration at a commercial-scale, demonstration CO<sub>2</sub> storage project, including subsequent emergence of the CO<sub>2</sub> into overlying permeable layers. Previous attempts at interpreting the time-lapse seismic data using amplitude attributes were hindered by noise from the limited survey repeatability combined with a weak signal due to the stiffness of the rock. Here we apply an alternative interpretation of the seismic data using time shift attributes, resulting in clear plume anomalies. In addition to migrating up the fault, we observe the plume diverted by the start of injection at a neighboring project. This work provides field observations of theorized plume behaviors and demonstrates an alternative approach to overcome challenges in interpreting seismic monitoring data for geological CO<sub>2</sub> storage.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"30 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Dioxide Migration Along Faults at the Illinois Basin—Decatur Project Revealed Using Time Shift Analysis of Seismic Monitoring Data\",\"authors\":\"I. Bukar, R. Bell, A. H. Muggeridge, S. Krevor\",\"doi\":\"10.1029/2024gl110049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large scale geological storage of CO<sub>2</sub> is being deployed worldwide to reduce greenhouse gas emissions to the atmosphere. Previous modeling studies have investigated the potential for CO<sub>2</sub> migration along faults. We observe such migration at a commercial-scale, demonstration CO<sub>2</sub> storage project, including subsequent emergence of the CO<sub>2</sub> into overlying permeable layers. Previous attempts at interpreting the time-lapse seismic data using amplitude attributes were hindered by noise from the limited survey repeatability combined with a weak signal due to the stiffness of the rock. Here we apply an alternative interpretation of the seismic data using time shift attributes, resulting in clear plume anomalies. In addition to migrating up the fault, we observe the plume diverted by the start of injection at a neighboring project. This work provides field observations of theorized plume behaviors and demonstrates an alternative approach to overcome challenges in interpreting seismic monitoring data for geological CO<sub>2</sub> storage.\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024gl110049\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl110049","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Carbon Dioxide Migration Along Faults at the Illinois Basin—Decatur Project Revealed Using Time Shift Analysis of Seismic Monitoring Data
Large scale geological storage of CO2 is being deployed worldwide to reduce greenhouse gas emissions to the atmosphere. Previous modeling studies have investigated the potential for CO2 migration along faults. We observe such migration at a commercial-scale, demonstration CO2 storage project, including subsequent emergence of the CO2 into overlying permeable layers. Previous attempts at interpreting the time-lapse seismic data using amplitude attributes were hindered by noise from the limited survey repeatability combined with a weak signal due to the stiffness of the rock. Here we apply an alternative interpretation of the seismic data using time shift attributes, resulting in clear plume anomalies. In addition to migrating up the fault, we observe the plume diverted by the start of injection at a neighboring project. This work provides field observations of theorized plume behaviors and demonstrates an alternative approach to overcome challenges in interpreting seismic monitoring data for geological CO2 storage.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.