{"title":"从进化博弈论角度重新思考自监督学习的泛化性和辨别性","authors":"Jiangmeng Li, Zehua Zang, Qirui Ji, Chuxiong Sun, Wenwen Qiang, Junge Zhang, Changwen Zheng, Fuchun Sun, Hui Xiong","doi":"10.1007/s11263-024-02321-2","DOIUrl":null,"url":null,"abstract":"<p>Representations learned by self-supervised approaches are generally considered to possess sufficient <i>generalizability</i> and <i>discriminability</i>. However, we disclose a nontrivial <i>mutual-exclusion</i> relationship between these critical representation properties through an exploratory demonstration on self-supervised learning. State-of-the-art self-supervised methods tend to enhance either generalizability or discriminability but not both simultaneously. Thus, learning representations <i>jointly</i> possessing strong generalizability and discriminability presents a specific challenge for self-supervised learning. To this end, we revisit the learning paradigm of self-supervised learning from the perspective of evolutionary game theory (EGT) and outline the theoretical roadmap to achieve a desired trade-off between these representation properties. EGT performs well in analyzing the trade-off point in a <i>two-player</i> game by utilizing dynamic system modeling. However, the EGT analysis requires sufficient annotated data, which contradicts the principle of self-supervised learning, i.e., the EGT analysis cannot be conducted without the annotations of the specific target domain for self-supervised learning. Thus, to enhance the methodological generalization, we propose a novel self-supervised learning method that leverages advancements in reinforcement learning to jointly benefit from the general guidance of EGT and sequentially optimize the model to chase the consistent improvement of generalizability and discriminability for specific target domains during pre-training. On top of this, we provide a benchmark to evaluate the generalizability and discriminability of learned representations comprehensively. Theoretically, we establish that the proposed method tightens the generalization error upper bound of self-supervised learning. Empirically, our method achieves state-of-the-art performance on various benchmarks. Our implementation is available at https://github.com/ZangZehua/essl.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"28 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Generalizability and Discriminability of Self-Supervised Learning from Evolutionary Game Theory Perspective\",\"authors\":\"Jiangmeng Li, Zehua Zang, Qirui Ji, Chuxiong Sun, Wenwen Qiang, Junge Zhang, Changwen Zheng, Fuchun Sun, Hui Xiong\",\"doi\":\"10.1007/s11263-024-02321-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Representations learned by self-supervised approaches are generally considered to possess sufficient <i>generalizability</i> and <i>discriminability</i>. However, we disclose a nontrivial <i>mutual-exclusion</i> relationship between these critical representation properties through an exploratory demonstration on self-supervised learning. State-of-the-art self-supervised methods tend to enhance either generalizability or discriminability but not both simultaneously. Thus, learning representations <i>jointly</i> possessing strong generalizability and discriminability presents a specific challenge for self-supervised learning. To this end, we revisit the learning paradigm of self-supervised learning from the perspective of evolutionary game theory (EGT) and outline the theoretical roadmap to achieve a desired trade-off between these representation properties. EGT performs well in analyzing the trade-off point in a <i>two-player</i> game by utilizing dynamic system modeling. However, the EGT analysis requires sufficient annotated data, which contradicts the principle of self-supervised learning, i.e., the EGT analysis cannot be conducted without the annotations of the specific target domain for self-supervised learning. Thus, to enhance the methodological generalization, we propose a novel self-supervised learning method that leverages advancements in reinforcement learning to jointly benefit from the general guidance of EGT and sequentially optimize the model to chase the consistent improvement of generalizability and discriminability for specific target domains during pre-training. On top of this, we provide a benchmark to evaluate the generalizability and discriminability of learned representations comprehensively. Theoretically, we establish that the proposed method tightens the generalization error upper bound of self-supervised learning. Empirically, our method achieves state-of-the-art performance on various benchmarks. Our implementation is available at https://github.com/ZangZehua/essl.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02321-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02321-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Rethinking Generalizability and Discriminability of Self-Supervised Learning from Evolutionary Game Theory Perspective
Representations learned by self-supervised approaches are generally considered to possess sufficient generalizability and discriminability. However, we disclose a nontrivial mutual-exclusion relationship between these critical representation properties through an exploratory demonstration on self-supervised learning. State-of-the-art self-supervised methods tend to enhance either generalizability or discriminability but not both simultaneously. Thus, learning representations jointly possessing strong generalizability and discriminability presents a specific challenge for self-supervised learning. To this end, we revisit the learning paradigm of self-supervised learning from the perspective of evolutionary game theory (EGT) and outline the theoretical roadmap to achieve a desired trade-off between these representation properties. EGT performs well in analyzing the trade-off point in a two-player game by utilizing dynamic system modeling. However, the EGT analysis requires sufficient annotated data, which contradicts the principle of self-supervised learning, i.e., the EGT analysis cannot be conducted without the annotations of the specific target domain for self-supervised learning. Thus, to enhance the methodological generalization, we propose a novel self-supervised learning method that leverages advancements in reinforcement learning to jointly benefit from the general guidance of EGT and sequentially optimize the model to chase the consistent improvement of generalizability and discriminability for specific target domains during pre-training. On top of this, we provide a benchmark to evaluate the generalizability and discriminability of learned representations comprehensively. Theoretically, we establish that the proposed method tightens the generalization error upper bound of self-supervised learning. Empirically, our method achieves state-of-the-art performance on various benchmarks. Our implementation is available at https://github.com/ZangZehua/essl.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.