Shahin Ghamari, Germán Chiarelli, Karol Kołątaj, Sivaraman Subramanian, Guillermo P. Acuna, Frank Vollmer
{"title":"使用等离子体增强WGM传感器对DNA折纸上的单个DNA分子进行无标记(无荧光)传感","authors":"Shahin Ghamari, Germán Chiarelli, Karol Kołątaj, Sivaraman Subramanian, Guillermo P. Acuna, Frank Vollmer","doi":"10.1515/nanoph-2024-0560","DOIUrl":null,"url":null,"abstract":"The integration of DNA origami structures with opto-plasmonic whispering gallery mode (WGM) sensors offers a significant advancement in label-free biosensing, overcoming the limitations of traditional fluorescence-based techniques, and providing enhanced sensitivity and specificity for detecting DNA hybridization events. In this study, DNA origami acts as a scaffold for the precise assembly of plasmonic dimers, composed of gold nanorods (AuNRs), which amplify detection sensitivity by generating strong near-field enhancements in the nanogap between the nanorods. By leveraging the strong electromagnetic fields generated within the nanogap of the plasmonic dimer, this platform enables the detection of transient hybridization events between DNA docking strands and freely diffusing complementary sequences. Our findings demonstrate that the salt concentration critically influences DNA hybridization kinetics. Higher ionic strengths reduce electrostatic repulsion between negatively charged DNA strands, thereby stabilizing duplex formation and prolonging interaction times. These effects are most pronounced at salt concentrations around 300–500 mM, where optimal conditions for duplex stability and reduced dissociation rates are achieved. By thoroughly investigating the hybridization kinetics under varying environmental conditions, this study contributes to a deeper understanding of DNA interactions and offers a robust tool for single-molecule detection with real-time capabilities.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"7 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-free (fluorescence-free) sensing of a single DNA molecule on DNA origami using a plasmon-enhanced WGM sensor\",\"authors\":\"Shahin Ghamari, Germán Chiarelli, Karol Kołątaj, Sivaraman Subramanian, Guillermo P. Acuna, Frank Vollmer\",\"doi\":\"10.1515/nanoph-2024-0560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of DNA origami structures with opto-plasmonic whispering gallery mode (WGM) sensors offers a significant advancement in label-free biosensing, overcoming the limitations of traditional fluorescence-based techniques, and providing enhanced sensitivity and specificity for detecting DNA hybridization events. In this study, DNA origami acts as a scaffold for the precise assembly of plasmonic dimers, composed of gold nanorods (AuNRs), which amplify detection sensitivity by generating strong near-field enhancements in the nanogap between the nanorods. By leveraging the strong electromagnetic fields generated within the nanogap of the plasmonic dimer, this platform enables the detection of transient hybridization events between DNA docking strands and freely diffusing complementary sequences. Our findings demonstrate that the salt concentration critically influences DNA hybridization kinetics. Higher ionic strengths reduce electrostatic repulsion between negatively charged DNA strands, thereby stabilizing duplex formation and prolonging interaction times. These effects are most pronounced at salt concentrations around 300–500 mM, where optimal conditions for duplex stability and reduced dissociation rates are achieved. By thoroughly investigating the hybridization kinetics under varying environmental conditions, this study contributes to a deeper understanding of DNA interactions and offers a robust tool for single-molecule detection with real-time capabilities.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0560\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0560","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Label-free (fluorescence-free) sensing of a single DNA molecule on DNA origami using a plasmon-enhanced WGM sensor
The integration of DNA origami structures with opto-plasmonic whispering gallery mode (WGM) sensors offers a significant advancement in label-free biosensing, overcoming the limitations of traditional fluorescence-based techniques, and providing enhanced sensitivity and specificity for detecting DNA hybridization events. In this study, DNA origami acts as a scaffold for the precise assembly of plasmonic dimers, composed of gold nanorods (AuNRs), which amplify detection sensitivity by generating strong near-field enhancements in the nanogap between the nanorods. By leveraging the strong electromagnetic fields generated within the nanogap of the plasmonic dimer, this platform enables the detection of transient hybridization events between DNA docking strands and freely diffusing complementary sequences. Our findings demonstrate that the salt concentration critically influences DNA hybridization kinetics. Higher ionic strengths reduce electrostatic repulsion between negatively charged DNA strands, thereby stabilizing duplex formation and prolonging interaction times. These effects are most pronounced at salt concentrations around 300–500 mM, where optimal conditions for duplex stability and reduced dissociation rates are achieved. By thoroughly investigating the hybridization kinetics under varying environmental conditions, this study contributes to a deeper understanding of DNA interactions and offers a robust tool for single-molecule detection with real-time capabilities.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.