利用塑性调整超材料的屈曲顺序

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2025-01-10 DOI:10.1016/j.jmps.2024.106019
Wenfeng Liu , Bernard Ennis , Corentin Coulais
{"title":"利用塑性调整超材料的屈曲顺序","authors":"Wenfeng Liu ,&nbsp;Bernard Ennis ,&nbsp;Corentin Coulais","doi":"10.1016/j.jmps.2024.106019","DOIUrl":null,"url":null,"abstract":"<div><div>Material nonlinearities such as hyperelasticity, viscoelasticity, and plasticity have recently emerged as design paradigms for metamaterials based on buckling. These metamaterials exhibit properties such as shape morphing, transition waves, and sequential deformation. In particular, plasticity has been used in the design of sequential metamaterials which combine high stiffness, strength, and dissipation at low density and produce superior shock absorbing performances. However, the use of plasticity for tuning buckling sequences in metamaterials remains largely unexplored. In this work, we introduce yield area, yield criterion, and loading history as new design tools of plasticity in tuning the buckling load and sequence in metamaterials. We numerically and experimentally demonstrate a controllable buckling sequence in different metamaterial architectures with the above three strategies. Our findings enrich the toolbox of plasticity in the design of metamaterials with more controllable sequential deformations and leverage plasticity to broader applications in multifunctional metamaterials, high-performance soft robotics, and mechanical self-assembly.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"196 ","pages":"Article 106019"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the buckling sequences of metamaterials using plasticity\",\"authors\":\"Wenfeng Liu ,&nbsp;Bernard Ennis ,&nbsp;Corentin Coulais\",\"doi\":\"10.1016/j.jmps.2024.106019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Material nonlinearities such as hyperelasticity, viscoelasticity, and plasticity have recently emerged as design paradigms for metamaterials based on buckling. These metamaterials exhibit properties such as shape morphing, transition waves, and sequential deformation. In particular, plasticity has been used in the design of sequential metamaterials which combine high stiffness, strength, and dissipation at low density and produce superior shock absorbing performances. However, the use of plasticity for tuning buckling sequences in metamaterials remains largely unexplored. In this work, we introduce yield area, yield criterion, and loading history as new design tools of plasticity in tuning the buckling load and sequence in metamaterials. We numerically and experimentally demonstrate a controllable buckling sequence in different metamaterial architectures with the above three strategies. Our findings enrich the toolbox of plasticity in the design of metamaterials with more controllable sequential deformations and leverage plasticity to broader applications in multifunctional metamaterials, high-performance soft robotics, and mechanical self-assembly.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"196 \",\"pages\":\"Article 106019\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002250962400485X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962400485X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

材料的非线性,如超弹性、粘弹性和塑性,最近成为基于屈曲的超材料的设计范式。这些超材料表现出形状变形、过渡波和顺序变形等特性。特别是,塑性已被用于连续超材料的设计,这些超材料结合了高刚度,高强度和低密度的耗散,并产生了优越的减震性能。然而,利用塑性来调整超材料的屈曲顺序在很大程度上仍未被探索。在这项工作中,我们引入屈服区,屈服准则和加载历史作为塑性设计的新工具来调整超材料的屈曲载荷和顺序。通过数值和实验验证了上述三种策略在不同超材料结构中的可控屈曲顺序。我们的研究结果丰富了超材料设计中的可塑性工具箱,使其具有更可控的顺序变形,并将可塑性应用于多功能超材料、高性能软机器人和机械自组装等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning the buckling sequences of metamaterials using plasticity
Material nonlinearities such as hyperelasticity, viscoelasticity, and plasticity have recently emerged as design paradigms for metamaterials based on buckling. These metamaterials exhibit properties such as shape morphing, transition waves, and sequential deformation. In particular, plasticity has been used in the design of sequential metamaterials which combine high stiffness, strength, and dissipation at low density and produce superior shock absorbing performances. However, the use of plasticity for tuning buckling sequences in metamaterials remains largely unexplored. In this work, we introduce yield area, yield criterion, and loading history as new design tools of plasticity in tuning the buckling load and sequence in metamaterials. We numerically and experimentally demonstrate a controllable buckling sequence in different metamaterial architectures with the above three strategies. Our findings enrich the toolbox of plasticity in the design of metamaterials with more controllable sequential deformations and leverage plasticity to broader applications in multifunctional metamaterials, high-performance soft robotics, and mechanical self-assembly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
Inflation of a polydomain nematic elastomeric membrane Phase-augmented digital image correlation for high-accuracy deformation measurement: Theory, validation, and application to constitutive law learning Unusual stretching–twisting of liquid crystal elastomer bilayers Mechanics of liquid crystal inclusions in soft matrices Analysis of axisymmetric necking of a circular dielectric membrane based on a one-dimensional model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1