{"title":"隐式双尺度有限元分析中梯度增强韧性断裂本构建模","authors":"Tianwen Tan, Ikumu Watanabe","doi":"10.1016/j.jmps.2025.106025","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of damage modeling for ductile materials, numerous models have successfully addressed various fracture responses, as well as the need for robust algorithms and solutions to computational challenges. This study developed a damage model based on continuum damage mechanics. It addresses mesh regularization, a primary computational issue in macroscopic structural fracture analysis through a gradient-enhanced damage model using micromorphic theory and incorporating damage hardening variables. To provide a physical explanation for the characteristic lengths associated with the gradient-enhanced term, an extended “two-scale” computational homogenization approach was employed to define the length scale between the macro- and microscale. This microvariable within a micromorphic extension can be utilized to model the damage hardening mechanism, which cannot be fully captured via high-resolution localized characterization. In duplex microstructures, the length scale can be defined by the microstructure size relative to the width of the micro-shear band. This explains the damage overlapping phenomenon between the two-scales.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"196 ","pages":"Article 106025"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-enhanced ductile fracture constitutive modeling in implicit two-scale finite element analysis\",\"authors\":\"Tianwen Tan, Ikumu Watanabe\",\"doi\":\"10.1016/j.jmps.2025.106025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the field of damage modeling for ductile materials, numerous models have successfully addressed various fracture responses, as well as the need for robust algorithms and solutions to computational challenges. This study developed a damage model based on continuum damage mechanics. It addresses mesh regularization, a primary computational issue in macroscopic structural fracture analysis through a gradient-enhanced damage model using micromorphic theory and incorporating damage hardening variables. To provide a physical explanation for the characteristic lengths associated with the gradient-enhanced term, an extended “two-scale” computational homogenization approach was employed to define the length scale between the macro- and microscale. This microvariable within a micromorphic extension can be utilized to model the damage hardening mechanism, which cannot be fully captured via high-resolution localized characterization. In duplex microstructures, the length scale can be defined by the microstructure size relative to the width of the micro-shear band. This explains the damage overlapping phenomenon between the two-scales.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"196 \",\"pages\":\"Article 106025\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625000018\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625000018","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Gradient-enhanced ductile fracture constitutive modeling in implicit two-scale finite element analysis
In the field of damage modeling for ductile materials, numerous models have successfully addressed various fracture responses, as well as the need for robust algorithms and solutions to computational challenges. This study developed a damage model based on continuum damage mechanics. It addresses mesh regularization, a primary computational issue in macroscopic structural fracture analysis through a gradient-enhanced damage model using micromorphic theory and incorporating damage hardening variables. To provide a physical explanation for the characteristic lengths associated with the gradient-enhanced term, an extended “two-scale” computational homogenization approach was employed to define the length scale between the macro- and microscale. This microvariable within a micromorphic extension can be utilized to model the damage hardening mechanism, which cannot be fully captured via high-resolution localized characterization. In duplex microstructures, the length scale can be defined by the microstructure size relative to the width of the micro-shear band. This explains the damage overlapping phenomenon between the two-scales.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.