Ya-Xiong Wang , Hai-Jiang Tian , Yin-Long Yang , Tao Zhong , Hai-Bing Fu
{"title":"CKM元素|Vcd|和D+-介子衰变常数从轻子衰变D+ →","authors":"Ya-Xiong Wang , Hai-Jiang Tian , Yin-Long Yang , Tao Zhong , Hai-Bing Fu","doi":"10.1016/j.physletb.2024.139240","DOIUrl":null,"url":null,"abstract":"<div><div>The leptonic decay of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson has attracted significant interest due to its unique characteristics. In this paper, we carry out an investigation into the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson leptonic decays <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> with <span><math><mi>ℓ</mi><mo>=</mo><mo>(</mo><mi>e</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> by employing the QCD sum rules approach. In which the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson decay constant <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span> is an important input parameter in the process. To enhance the accuracy of our calculations for <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span>, we consider the quark propagator and vertex up to dimension-six within the framework of background field theory. Consequently, we obtain the QCD sum rule expression for <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span> up to dimension-six condensates, yielding <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mo>=</mo><mn>203.0</mn><mo>±</mo><mn>1.5</mn><mspace></mspace><mrow><mi>MeV</mi></mrow></math></span>. Our result is in good agreement with BESIII measurements and theoretical predictions. We also present the integrated decay widths for the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson in three channels <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>5.263</mn></mrow><mrow><mo>−</mo><mn>0.075</mn></mrow><mrow><mo>+</mo><mn>0.076</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>21</mn></mrow></msup><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span>, <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>2.236</mn></mrow><mrow><mo>−</mo><mn>0.032</mn></mrow><mrow><mo>+</mo><mn>0.032</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>16</mn></mrow></msup><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span> and <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>5.958</mn></mrow><mrow><mo>−</mo><mn>0.085</mn></mrow><mrow><mo>+</mo><mn>0.086</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>16</mn></mrow></msup><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span>. Accordingly, we compute the branching fractions <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> with the electron, muon and tau channels, which are <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>8.260</mn></mrow><mrow><mo>−</mo><mn>0.118</mn></mrow><mrow><mo>+</mo><mn>0.119</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></math></span>, <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>3.508</mn></mrow><mrow><mo>−</mo><mn>0.050</mn></mrow><mrow><mo>+</mo><mn>0.051</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span> and <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>0.935</mn></mrow><mrow><mo>−</mo><mn>0.013</mn></mrow><mrow><mo>+</mo><mn>0.013</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span>. Furthermore, we present our prediction for the CKM matrix element <span><math><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>d</mi></mrow></msub><mo>|</mo></math></span> using the branching fraction <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo></math></span> obtained from BESIII Collaboration, yielding <span><math><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>d</mi></mrow></msub><mo>|</mo><mo>=</mo><msubsup><mrow><mn>0.227</mn></mrow><mrow><mo>−</mo><mn>0.001</mn></mrow><mrow><mo>+</mo><mn>0.002</mn></mrow></msubsup></math></span>.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139240"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospective analysis of CKM element |Vcd| and D+-meson decay constant from leptonic decays D+ → ℓ+ν\",\"authors\":\"Ya-Xiong Wang , Hai-Jiang Tian , Yin-Long Yang , Tao Zhong , Hai-Bing Fu\",\"doi\":\"10.1016/j.physletb.2024.139240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The leptonic decay of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson has attracted significant interest due to its unique characteristics. In this paper, we carry out an investigation into the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson leptonic decays <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> with <span><math><mi>ℓ</mi><mo>=</mo><mo>(</mo><mi>e</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> by employing the QCD sum rules approach. In which the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson decay constant <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span> is an important input parameter in the process. To enhance the accuracy of our calculations for <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span>, we consider the quark propagator and vertex up to dimension-six within the framework of background field theory. Consequently, we obtain the QCD sum rule expression for <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></span> up to dimension-six condensates, yielding <span><math><msub><mrow><mi>f</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mo>=</mo><mn>203.0</mn><mo>±</mo><mn>1.5</mn><mspace></mspace><mrow><mi>MeV</mi></mrow></math></span>. Our result is in good agreement with BESIII measurements and theoretical predictions. We also present the integrated decay widths for the <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-meson in three channels <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>5.263</mn></mrow><mrow><mo>−</mo><mn>0.075</mn></mrow><mrow><mo>+</mo><mn>0.076</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>21</mn></mrow></msup><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span>, <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>2.236</mn></mrow><mrow><mo>−</mo><mn>0.032</mn></mrow><mrow><mo>+</mo><mn>0.032</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>16</mn></mrow></msup><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span> and <span><math><mi>Γ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>5.958</mn></mrow><mrow><mo>−</mo><mn>0.085</mn></mrow><mrow><mo>+</mo><mn>0.086</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>16</mn></mrow></msup><mspace></mspace><mrow><mi>GeV</mi></mrow></math></span>. Accordingly, we compute the branching fractions <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> with the electron, muon and tau channels, which are <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>8.260</mn></mrow><mrow><mo>−</mo><mn>0.118</mn></mrow><mrow><mo>+</mo><mn>0.119</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></math></span>, <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>3.508</mn></mrow><mrow><mo>−</mo><mn>0.050</mn></mrow><mrow><mo>+</mo><mn>0.051</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span> and <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><msubsup><mrow><mn>0.935</mn></mrow><mrow><mo>−</mo><mn>0.013</mn></mrow><mrow><mo>+</mo><mn>0.013</mn></mrow></msubsup><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span>. Furthermore, we present our prediction for the CKM matrix element <span><math><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>d</mi></mrow></msub><mo>|</mo></math></span> using the branching fraction <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo></math></span> obtained from BESIII Collaboration, yielding <span><math><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi><mi>d</mi></mrow></msub><mo>|</mo><mo>=</mo><msubsup><mrow><mn>0.227</mn></mrow><mrow><mo>−</mo><mn>0.001</mn></mrow><mrow><mo>+</mo><mn>0.002</mn></mrow></msubsup></math></span>.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"861 \",\"pages\":\"Article 139240\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269324007986\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324007986","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Prospective analysis of CKM element |Vcd| and D+-meson decay constant from leptonic decays D+ → ℓ+ν
The leptonic decay of -meson has attracted significant interest due to its unique characteristics. In this paper, we carry out an investigation into the -meson leptonic decays with by employing the QCD sum rules approach. In which the -meson decay constant is an important input parameter in the process. To enhance the accuracy of our calculations for , we consider the quark propagator and vertex up to dimension-six within the framework of background field theory. Consequently, we obtain the QCD sum rule expression for up to dimension-six condensates, yielding . Our result is in good agreement with BESIII measurements and theoretical predictions. We also present the integrated decay widths for the -meson in three channels , and . Accordingly, we compute the branching fractions with the electron, muon and tau channels, which are , and . Furthermore, we present our prediction for the CKM matrix element using the branching fraction obtained from BESIII Collaboration, yielding .
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.