用于ph反应性纳米酶衍生细菌感染伤口愈合的可喷雾水凝胶

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-01-20 DOI:10.1021/acsami.4c18100
Furong Chao, Chengliang Cao, Yin Xu, Yunjie Gu, Xinyu Qu, Qian Wang, Lu−Lu Qu, Yuxin Guo, Xiaochen Dong
{"title":"用于ph反应性纳米酶衍生细菌感染伤口愈合的可喷雾水凝胶","authors":"Furong Chao, Chengliang Cao, Yin Xu, Yunjie Gu, Xinyu Qu, Qian Wang, Lu−Lu Qu, Yuxin Guo, Xiaochen Dong","doi":"10.1021/acsami.4c18100","DOIUrl":null,"url":null,"abstract":"Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability. Herein, we develop a novel sprayable hydrogel based on carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA), incorporating Au nanoparticle-carbon nitride (AuNPs-C<sub>3</sub>N<sub>4</sub>) nanozyme, glucose, and Mn<sup>2+</sup> for bacteria-infected wound healing. The hydrogel forms rapidly in situ upon spraying and gradually degrades on the wound area, releasing the AuNPs-C<sub>3</sub>N<sub>4</sub> nanozyme, which exhibits robust glucose oxidase-like (GOx-like) activity, initiating a comprehensive catalytic cascade through a Mn<sup>2+</sup>-mediated Fenton-like reaction that generates hydroxyl radicals (<sup>•</sup>OH) to eliminate <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and Methicillin-resistant <i>S. aureus</i> (MRSA). Computational results indicate that interactions between AuNPs and g-C<sub>3</sub>N<sub>4</sub> maximize their synergistic effects in a heterojunction, improving O<sub>2</sub> adsorption and facilitating electron-O<sub>2</sub> interactions to optimize catalytic activity. Further experiments demonstrate that the hydrogel can rapidly cover wounds in situ, while CMCS promotes collagen production and fibroblast proliferation, offering a viable strategy for the healing of bacteria-infected wounds.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"1 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing\",\"authors\":\"Furong Chao, Chengliang Cao, Yin Xu, Yunjie Gu, Xinyu Qu, Qian Wang, Lu−Lu Qu, Yuxin Guo, Xiaochen Dong\",\"doi\":\"10.1021/acsami.4c18100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability. Herein, we develop a novel sprayable hydrogel based on carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA), incorporating Au nanoparticle-carbon nitride (AuNPs-C<sub>3</sub>N<sub>4</sub>) nanozyme, glucose, and Mn<sup>2+</sup> for bacteria-infected wound healing. The hydrogel forms rapidly in situ upon spraying and gradually degrades on the wound area, releasing the AuNPs-C<sub>3</sub>N<sub>4</sub> nanozyme, which exhibits robust glucose oxidase-like (GOx-like) activity, initiating a comprehensive catalytic cascade through a Mn<sup>2+</sup>-mediated Fenton-like reaction that generates hydroxyl radicals (<sup>•</sup>OH) to eliminate <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and Methicillin-resistant <i>S. aureus</i> (MRSA). Computational results indicate that interactions between AuNPs and g-C<sub>3</sub>N<sub>4</sub> maximize their synergistic effects in a heterojunction, improving O<sub>2</sub> adsorption and facilitating electron-O<sub>2</sub> interactions to optimize catalytic activity. Further experiments demonstrate that the hydrogel can rapidly cover wounds in situ, while CMCS promotes collagen production and fibroblast proliferation, offering a viable strategy for the healing of bacteria-infected wounds.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c18100\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

长期炎症和持续性细菌感染是导致慢性伤口无法愈合的主要原因。使用常规抗生素往往导致细菌耐药,降低伤口愈合效果。纳米酶具有成本低、合成简单、稳定性好等优点,已成为一种很有前途的抗菌材料替代品。在此,我们开发了一种基于羧甲基壳聚糖(CMCS)和氧化透明质酸(OHA)的新型喷雾水凝胶,其中含有金纳米颗粒-氮化碳(AuNPs-C3N4)纳米酶,葡萄糖和Mn2+,用于细菌感染伤口愈合。水凝胶在喷洒后迅速原位形成,并在伤口区域逐渐降解,释放出具有强大的葡萄糖氧化酶样(gox样)活性的AuNPs-C3N4纳米酶,通过Mn2+介导的芬顿样反应启动全面的催化级联反应,产生羟基自由基(•OH),以消灭金黄色葡萄球菌(S. aureus)和耐甲氧西林金黄色葡萄球菌(MRSA)。计算结果表明,AuNPs和g-C3N4之间的相互作用最大化了它们在异质结中的协同作用,提高了O2的吸附,促进了电子-O2的相互作用,从而优化了催化活性。进一步的实验表明,水凝胶可以快速覆盖伤口原位,而CMCS促进胶原蛋白的产生和成纤维细胞的增殖,为细菌感染伤口的愈合提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing
Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability. Herein, we develop a novel sprayable hydrogel based on carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA), incorporating Au nanoparticle-carbon nitride (AuNPs-C3N4) nanozyme, glucose, and Mn2+ for bacteria-infected wound healing. The hydrogel forms rapidly in situ upon spraying and gradually degrades on the wound area, releasing the AuNPs-C3N4 nanozyme, which exhibits robust glucose oxidase-like (GOx-like) activity, initiating a comprehensive catalytic cascade through a Mn2+-mediated Fenton-like reaction that generates hydroxyl radicals (OH) to eliminate Staphylococcus aureus (S. aureus) and Methicillin-resistant S. aureus (MRSA). Computational results indicate that interactions between AuNPs and g-C3N4 maximize their synergistic effects in a heterojunction, improving O2 adsorption and facilitating electron-O2 interactions to optimize catalytic activity. Further experiments demonstrate that the hydrogel can rapidly cover wounds in situ, while CMCS promotes collagen production and fibroblast proliferation, offering a viable strategy for the healing of bacteria-infected wounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
“Nanoskeleton” Si-SiOx/C Anodes toward Highly Stable Lithium-Ion Batteries Environmentally Friendly Water-Based Carbon Slurry with Carboxylated Carbon Nanosheets for Optimizing the Electrode–Collector Interface in Lithium-Ion Batteries Cation-Deficient LixWO3 Surface Coating on Ni-Rich Cathodes Materials for Lithium-Ion Batteries Microenvironment Matters: Copper–Carbon Composites Enable a Highly Efficient Carbon Dioxide Reduction Reaction to C2 Products 3-Indoleacetic Acid-Modified Chondroitin Sulfate-Mediated Paclitaxel Nanocrystal Assembly for the Treatment of Pancreatic Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1