{"title":"设计一种适合植物叶绿体衍生酶的微生物工厂,以高效、绿色地合成天然产物:辣椒素和辣椒素。","authors":"Huibin Chen,Guiping Guo,Qiaoyue Li,Zhen Liu","doi":"10.1016/j.ymben.2025.01.005","DOIUrl":null,"url":null,"abstract":"Specific cellular microenvironment, multi-enzyme complex and expensive essential cofactor make the biological manufacturing of plant chloroplast natural products (PCNPs) extremely challenging. The above difficulties have hampered the biosynthesis of capsanthin and capsorubin in the past 30 years. Here, we take capsanthin and capsorubin as examples to design an innovative microbial factory to promote the heterologous synthesis of PCPNs. Our main strategy is mimicking the microenvironment of chloroplasts in microbial factory. First, accumulation of violaxanthin, which is the key precursor, was increased by 587.9%, through introducing oxidative microenvironment and thioredoxin. The initial capsanthin-producing strain with 0.28 mg g-1 DCW were obtained by introducing capsanthin/capsorubin synthase (CCS). Subsequently, chloroplast-derived chaperones Cpn60α, Cpn60β and Cpn20 created a folding-promoting microenvironment for CCS. At the same time, by imitating the quasi-natural CCS, an artificial homotrimer was constructed and obtained 5.15 mg g-1 DCW capsanthin, and 1.62 mg g-1 DCW capsorubin. Finally, sufficient FADH2 was provided for CCS by feeding 20 mM formate. This process was realized by the continuous catalysis of formate dehydrogenase and flavin reductase. The engineered strain accumulated 6.77 mg g-1 DCW of capsanthin and 2.18 mg g-1 DCW of capsorubin. Compared with the initial strain, the yield of capsanthin was increased by 24.18 times, and 13.54 times of the highest yield reported so far. Artificially designed microbial cell factory and low-cost cofactor supply methods are in line with the current sustainable and green wave of biochemicals. This work not only provides a platform strain for low-cost and sustainable biosynthesis, but also provides a paradigm for heterologous expression of chloroplast-derived enzymes.","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"20 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a microbial factory suited for plant chloroplast-derived enzymes to efficiently and green synthesize natural products: capsanthin and capsorubin as examples.\",\"authors\":\"Huibin Chen,Guiping Guo,Qiaoyue Li,Zhen Liu\",\"doi\":\"10.1016/j.ymben.2025.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specific cellular microenvironment, multi-enzyme complex and expensive essential cofactor make the biological manufacturing of plant chloroplast natural products (PCNPs) extremely challenging. The above difficulties have hampered the biosynthesis of capsanthin and capsorubin in the past 30 years. Here, we take capsanthin and capsorubin as examples to design an innovative microbial factory to promote the heterologous synthesis of PCPNs. Our main strategy is mimicking the microenvironment of chloroplasts in microbial factory. First, accumulation of violaxanthin, which is the key precursor, was increased by 587.9%, through introducing oxidative microenvironment and thioredoxin. The initial capsanthin-producing strain with 0.28 mg g-1 DCW were obtained by introducing capsanthin/capsorubin synthase (CCS). Subsequently, chloroplast-derived chaperones Cpn60α, Cpn60β and Cpn20 created a folding-promoting microenvironment for CCS. At the same time, by imitating the quasi-natural CCS, an artificial homotrimer was constructed and obtained 5.15 mg g-1 DCW capsanthin, and 1.62 mg g-1 DCW capsorubin. Finally, sufficient FADH2 was provided for CCS by feeding 20 mM formate. This process was realized by the continuous catalysis of formate dehydrogenase and flavin reductase. The engineered strain accumulated 6.77 mg g-1 DCW of capsanthin and 2.18 mg g-1 DCW of capsorubin. Compared with the initial strain, the yield of capsanthin was increased by 24.18 times, and 13.54 times of the highest yield reported so far. Artificially designed microbial cell factory and low-cost cofactor supply methods are in line with the current sustainable and green wave of biochemicals. This work not only provides a platform strain for low-cost and sustainable biosynthesis, but also provides a paradigm for heterologous expression of chloroplast-derived enzymes.\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymben.2025.01.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.01.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Designing a microbial factory suited for plant chloroplast-derived enzymes to efficiently and green synthesize natural products: capsanthin and capsorubin as examples.
Specific cellular microenvironment, multi-enzyme complex and expensive essential cofactor make the biological manufacturing of plant chloroplast natural products (PCNPs) extremely challenging. The above difficulties have hampered the biosynthesis of capsanthin and capsorubin in the past 30 years. Here, we take capsanthin and capsorubin as examples to design an innovative microbial factory to promote the heterologous synthesis of PCPNs. Our main strategy is mimicking the microenvironment of chloroplasts in microbial factory. First, accumulation of violaxanthin, which is the key precursor, was increased by 587.9%, through introducing oxidative microenvironment and thioredoxin. The initial capsanthin-producing strain with 0.28 mg g-1 DCW were obtained by introducing capsanthin/capsorubin synthase (CCS). Subsequently, chloroplast-derived chaperones Cpn60α, Cpn60β and Cpn20 created a folding-promoting microenvironment for CCS. At the same time, by imitating the quasi-natural CCS, an artificial homotrimer was constructed and obtained 5.15 mg g-1 DCW capsanthin, and 1.62 mg g-1 DCW capsorubin. Finally, sufficient FADH2 was provided for CCS by feeding 20 mM formate. This process was realized by the continuous catalysis of formate dehydrogenase and flavin reductase. The engineered strain accumulated 6.77 mg g-1 DCW of capsanthin and 2.18 mg g-1 DCW of capsorubin. Compared with the initial strain, the yield of capsanthin was increased by 24.18 times, and 13.54 times of the highest yield reported so far. Artificially designed microbial cell factory and low-cost cofactor supply methods are in line with the current sustainable and green wave of biochemicals. This work not only provides a platform strain for low-cost and sustainable biosynthesis, but also provides a paradigm for heterologous expression of chloroplast-derived enzymes.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.