CuO@Co3O4/GF异质结构增强分子氧活化对磷酸氯喹的高效降解:氧空位促进机制和界面电子工程

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-01-22 DOI:10.1016/j.seppur.2025.131745
Xuelin Shi, Zihao Yan, Tong Zhu, Zhirong Sun
{"title":"CuO@Co3O4/GF异质结构增强分子氧活化对磷酸氯喹的高效降解:氧空位促进机制和界面电子工程","authors":"Xuelin Shi, Zihao Yan, Tong Zhu, Zhirong Sun","doi":"10.1016/j.seppur.2025.131745","DOIUrl":null,"url":null,"abstract":"To address the issue of insufficient oxygen activation by electrode materials in electro-Fenton-like technology, we prepared a novel composite by one-step electrodeposition on graphite felt (GF) followed by calcination. The CuO@Co<sub>3</sub>O<sub>4</sub>/GF composite possessed oxygen vacancies and a heterostructure, which effectively modulated the catalyst’s charge distribution, facilitating oxygen adsorption and activation. The heterostructure enhanced the interfacial electron transfer between CuO and Co<sub>3</sub>O<sub>4</sub>, shifting the Co d-band center to higher energies and increasing its electron density, which reduced the oxygen adsorption energy barrier. The presence of oxygen vacancies reduced the kinetic barriers of the oxygen reduction reaction and provided additional active sites. CuO@Co<sub>3</sub>O<sub>4</sub>/GF was utilized for chloroquine phosphate degradation, achieving 100 % removal within 60 min, with a reaction rate 5.6 times higher than that of GF, and exhibited exceptional stability and applicability over a broad pH range. This study presents a facile approach for preparing composites with both oxygen vacancies and heterostructures, providing new insights into enhancing electrocatalytic performance.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"38 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced activation of molecular oxygen for efficient chloroquine phosphate degradation with CuO@Co3O4/GF heterostructure: Promoting mechanisms of oxygen vacancy and interfacial electronic engineering\",\"authors\":\"Xuelin Shi, Zihao Yan, Tong Zhu, Zhirong Sun\",\"doi\":\"10.1016/j.seppur.2025.131745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the issue of insufficient oxygen activation by electrode materials in electro-Fenton-like technology, we prepared a novel composite by one-step electrodeposition on graphite felt (GF) followed by calcination. The CuO@Co<sub>3</sub>O<sub>4</sub>/GF composite possessed oxygen vacancies and a heterostructure, which effectively modulated the catalyst’s charge distribution, facilitating oxygen adsorption and activation. The heterostructure enhanced the interfacial electron transfer between CuO and Co<sub>3</sub>O<sub>4</sub>, shifting the Co d-band center to higher energies and increasing its electron density, which reduced the oxygen adsorption energy barrier. The presence of oxygen vacancies reduced the kinetic barriers of the oxygen reduction reaction and provided additional active sites. CuO@Co<sub>3</sub>O<sub>4</sub>/GF was utilized for chloroquine phosphate degradation, achieving 100 % removal within 60 min, with a reaction rate 5.6 times higher than that of GF, and exhibited exceptional stability and applicability over a broad pH range. This study presents a facile approach for preparing composites with both oxygen vacancies and heterostructures, providing new insights into enhancing electrocatalytic performance.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2025.131745\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131745","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了解决电- fenton -like技术中电极材料氧活化不足的问题,我们在石墨毡(GF)上一步电沉积并煅烧制备了一种新型复合材料。CuO@Co3O4/GF复合材料具有氧空位和异质结构,可以有效调节催化剂的电荷分布,促进氧的吸附和活化。异质结构增强了CuO和Co3O4之间的界面电子转移,使Co -能带中心向高能量转移,增加了Co -能带的电子密度,降低了氧吸附能垒。氧空位的存在降低了氧还原反应的动力学障碍,并提供了额外的活性位点。CuO@Co3O4/GF用于磷酸氯喹的降解,在60 min内达到100% %的去除率,反应速率比GF高5.6倍,并且在较宽的pH范围内表现出优异的稳定性和适用性。本研究提出了一种制备氧空位和异质结构复合材料的简便方法,为提高电催化性能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced activation of molecular oxygen for efficient chloroquine phosphate degradation with CuO@Co3O4/GF heterostructure: Promoting mechanisms of oxygen vacancy and interfacial electronic engineering
To address the issue of insufficient oxygen activation by electrode materials in electro-Fenton-like technology, we prepared a novel composite by one-step electrodeposition on graphite felt (GF) followed by calcination. The CuO@Co3O4/GF composite possessed oxygen vacancies and a heterostructure, which effectively modulated the catalyst’s charge distribution, facilitating oxygen adsorption and activation. The heterostructure enhanced the interfacial electron transfer between CuO and Co3O4, shifting the Co d-band center to higher energies and increasing its electron density, which reduced the oxygen adsorption energy barrier. The presence of oxygen vacancies reduced the kinetic barriers of the oxygen reduction reaction and provided additional active sites. CuO@Co3O4/GF was utilized for chloroquine phosphate degradation, achieving 100 % removal within 60 min, with a reaction rate 5.6 times higher than that of GF, and exhibited exceptional stability and applicability over a broad pH range. This study presents a facile approach for preparing composites with both oxygen vacancies and heterostructures, providing new insights into enhancing electrocatalytic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Dual-driven charge transport enabled by S-scheme heterojunction and solid solution in CdS@N-NiCoO photocatalysts for enhanced hydrogen evolution Extracting metallic lithium and separating diffusion pump oil from lithium slag using a novel negative pressure distillation technology Additive promoted supported mixed amines on mesoporous silica for cyclic capture of carbon dioxide A conical array water evaporator with anti-biofouling, salt-rejecting and anti-polyelectrolyte effect for efficient solar energy-driven seawater desalination Permanganate pretreatment Improves the production of short chain fatty acids from waste activated sludge at pH10: Performance and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1