N. K. Dulaev, D. A. Telnov, V. M. Shabaev, Y. S. Kozhedub, X. Ma, I. A. Maltsev, R. V. Popov, I. I. Tupitsyn
{"title":"重核超临界碰撞中正电子产生的三维计算","authors":"N. K. Dulaev, D. A. Telnov, V. M. Shabaev, Y. S. Kozhedub, X. Ma, I. A. Maltsev, R. V. Popov, I. I. Tupitsyn","doi":"10.1103/physrevd.111.016018","DOIUrl":null,"url":null,"abstract":"Energy-angle differential and total probabilities of positron creation in slow supercritical collisions of two identical heavy nuclei are calculated beyond the monopole approximation. The time-dependent Dirac equation (TDDE) for positrons is solved using the generalized pseudospectral method in modified prolate spheroidal coordinates, which are well suited for description of close collisions in two-center quantum systems. In the frame of reference where the quasimolecular axis is fixed, the rotational coupling term is added to the Hamiltonian. Unlike our previous calculations, we do not discard this term and retain it when solving the TDDE. Both three-dimensional angle-resolved and angle-integrated energy distributions of outgoing positrons are obtained. Three-dimensional angle-resolved distributions exhibit a high degree of isotropy. For the collision energies in the interval 6 to 8</a:mn></a:mtext></a:mtext>MeV</a:mi>/</a:mo>u</a:mi></a:mrow></a:math>, the influence of the rotational coupling on the distributions and total positron creation probabilities is quite small. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"105 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional calculations of positron creation in supercritical collisions of heavy nuclei\",\"authors\":\"N. K. Dulaev, D. A. Telnov, V. M. Shabaev, Y. S. Kozhedub, X. Ma, I. A. Maltsev, R. V. Popov, I. I. Tupitsyn\",\"doi\":\"10.1103/physrevd.111.016018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-angle differential and total probabilities of positron creation in slow supercritical collisions of two identical heavy nuclei are calculated beyond the monopole approximation. The time-dependent Dirac equation (TDDE) for positrons is solved using the generalized pseudospectral method in modified prolate spheroidal coordinates, which are well suited for description of close collisions in two-center quantum systems. In the frame of reference where the quasimolecular axis is fixed, the rotational coupling term is added to the Hamiltonian. Unlike our previous calculations, we do not discard this term and retain it when solving the TDDE. Both three-dimensional angle-resolved and angle-integrated energy distributions of outgoing positrons are obtained. Three-dimensional angle-resolved distributions exhibit a high degree of isotropy. For the collision energies in the interval 6 to 8</a:mn></a:mtext></a:mtext>MeV</a:mi>/</a:mo>u</a:mi></a:mrow></a:math>, the influence of the rotational coupling on the distributions and total positron creation probabilities is quite small. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.016018\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.016018","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Three-dimensional calculations of positron creation in supercritical collisions of heavy nuclei
Energy-angle differential and total probabilities of positron creation in slow supercritical collisions of two identical heavy nuclei are calculated beyond the monopole approximation. The time-dependent Dirac equation (TDDE) for positrons is solved using the generalized pseudospectral method in modified prolate spheroidal coordinates, which are well suited for description of close collisions in two-center quantum systems. In the frame of reference where the quasimolecular axis is fixed, the rotational coupling term is added to the Hamiltonian. Unlike our previous calculations, we do not discard this term and retain it when solving the TDDE. Both three-dimensional angle-resolved and angle-integrated energy distributions of outgoing positrons are obtained. Three-dimensional angle-resolved distributions exhibit a high degree of isotropy. For the collision energies in the interval 6 to 8MeV/u, the influence of the rotational coupling on the distributions and total positron creation probabilities is quite small. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.