{"title":"原子干涉仪作为时间膨胀测量的自由落体钟","authors":"Albert Roura","doi":"10.1088/2058-9565/ad9e2e","DOIUrl":null,"url":null,"abstract":"Light-pulse atom interferometers based on single-photon transitions are a promising tool for gravitational-wave detection in the mid-frequency band and the search for ultralight dark-matter fields. Here we present a novel measurement scheme that enables their use as freely falling clocks directly measuring relativistic time-dilation effects. The proposal is particularly timely because it can be implemented with no additional requirements in Fermilab’s MAGIS-100 experiment or even in the 10 m prototypes that are expected to start operating very soon. This will allow the unprecedented measurement of gravitational time dilation in a local experiment with freely falling atoms, which is beyond reach even for the best atomic-fountain clocks based on microwave transitions. The results are supported by a comprehensive treatment of relativistic effects in this kind of interferometer as well as a detailed analysis of the main systematic effects. Furthermore, the theoretical methods developed here constitute a valuable tool for modelling light-pulse atom interferometers based on single-photon transitions in general.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"38 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom interferometer as a freely falling clock for time-dilation measurements\",\"authors\":\"Albert Roura\",\"doi\":\"10.1088/2058-9565/ad9e2e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light-pulse atom interferometers based on single-photon transitions are a promising tool for gravitational-wave detection in the mid-frequency band and the search for ultralight dark-matter fields. Here we present a novel measurement scheme that enables their use as freely falling clocks directly measuring relativistic time-dilation effects. The proposal is particularly timely because it can be implemented with no additional requirements in Fermilab’s MAGIS-100 experiment or even in the 10 m prototypes that are expected to start operating very soon. This will allow the unprecedented measurement of gravitational time dilation in a local experiment with freely falling atoms, which is beyond reach even for the best atomic-fountain clocks based on microwave transitions. The results are supported by a comprehensive treatment of relativistic effects in this kind of interferometer as well as a detailed analysis of the main systematic effects. Furthermore, the theoretical methods developed here constitute a valuable tool for modelling light-pulse atom interferometers based on single-photon transitions in general.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad9e2e\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9e2e","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Atom interferometer as a freely falling clock for time-dilation measurements
Light-pulse atom interferometers based on single-photon transitions are a promising tool for gravitational-wave detection in the mid-frequency band and the search for ultralight dark-matter fields. Here we present a novel measurement scheme that enables their use as freely falling clocks directly measuring relativistic time-dilation effects. The proposal is particularly timely because it can be implemented with no additional requirements in Fermilab’s MAGIS-100 experiment or even in the 10 m prototypes that are expected to start operating very soon. This will allow the unprecedented measurement of gravitational time dilation in a local experiment with freely falling atoms, which is beyond reach even for the best atomic-fountain clocks based on microwave transitions. The results are supported by a comprehensive treatment of relativistic effects in this kind of interferometer as well as a detailed analysis of the main systematic effects. Furthermore, the theoretical methods developed here constitute a valuable tool for modelling light-pulse atom interferometers based on single-photon transitions in general.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.