{"title":"针对视觉识别的预训练木马攻击","authors":"Aishan Liu, Xianglong Liu, Xinwei Zhang, Yisong Xiao, Yuguang Zhou, Siyuan Liang, Jiakai Wang, Xiaochun Cao, Dacheng Tao","doi":"10.1007/s11263-024-02333-y","DOIUrl":null,"url":null,"abstract":"<p>Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks. However, the presence of backdoors within PVMs poses significant threats. Unfortunately, existing studies primarily focus on backdooring PVMs for the classification task, neglecting potential inherited backdoors in downstream tasks such as detection and segmentation. In this paper, we propose the <i>Pre-trained Trojan</i> attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks. We highlight the challenges posed by <i>cross-task activation</i> and <i>shortcut connections</i> in successful backdoor attacks. To achieve effective trigger activation in diverse tasks, we stylize the backdoor trigger patterns with class-specific textures, enhancing the recognition of task-irrelevant low-level features associated with the target class in the trigger pattern. Moreover, we address the issue of shortcut connections by introducing a context-free learning pipeline for poison training. In this approach, triggers without contextual backgrounds are directly utilized as training data, diverging from the conventional use of clean images. Consequently, we establish a direct shortcut from the trigger to the target class, mitigating the shortcut connection issue. We conducted extensive experiments to thoroughly validate the effectiveness of our attacks on downstream detection and segmentation tasks. Additionally, we showcase the potential of our approach in more practical scenarios, including large vision models and 3D object detection in autonomous driving. This paper aims to raise awareness of the potential threats associated with applying PVMs in practical scenarios. Our codes are available at https://github.com/Veee9/Pre-trained-Trojan.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"33 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-trained Trojan Attacks for Visual Recognition\",\"authors\":\"Aishan Liu, Xianglong Liu, Xinwei Zhang, Yisong Xiao, Yuguang Zhou, Siyuan Liang, Jiakai Wang, Xiaochun Cao, Dacheng Tao\",\"doi\":\"10.1007/s11263-024-02333-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks. However, the presence of backdoors within PVMs poses significant threats. Unfortunately, existing studies primarily focus on backdooring PVMs for the classification task, neglecting potential inherited backdoors in downstream tasks such as detection and segmentation. In this paper, we propose the <i>Pre-trained Trojan</i> attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks. We highlight the challenges posed by <i>cross-task activation</i> and <i>shortcut connections</i> in successful backdoor attacks. To achieve effective trigger activation in diverse tasks, we stylize the backdoor trigger patterns with class-specific textures, enhancing the recognition of task-irrelevant low-level features associated with the target class in the trigger pattern. Moreover, we address the issue of shortcut connections by introducing a context-free learning pipeline for poison training. In this approach, triggers without contextual backgrounds are directly utilized as training data, diverging from the conventional use of clean images. Consequently, we establish a direct shortcut from the trigger to the target class, mitigating the shortcut connection issue. We conducted extensive experiments to thoroughly validate the effectiveness of our attacks on downstream detection and segmentation tasks. Additionally, we showcase the potential of our approach in more practical scenarios, including large vision models and 3D object detection in autonomous driving. This paper aims to raise awareness of the potential threats associated with applying PVMs in practical scenarios. Our codes are available at https://github.com/Veee9/Pre-trained-Trojan.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02333-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02333-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks. However, the presence of backdoors within PVMs poses significant threats. Unfortunately, existing studies primarily focus on backdooring PVMs for the classification task, neglecting potential inherited backdoors in downstream tasks such as detection and segmentation. In this paper, we propose the Pre-trained Trojan attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks. We highlight the challenges posed by cross-task activation and shortcut connections in successful backdoor attacks. To achieve effective trigger activation in diverse tasks, we stylize the backdoor trigger patterns with class-specific textures, enhancing the recognition of task-irrelevant low-level features associated with the target class in the trigger pattern. Moreover, we address the issue of shortcut connections by introducing a context-free learning pipeline for poison training. In this approach, triggers without contextual backgrounds are directly utilized as training data, diverging from the conventional use of clean images. Consequently, we establish a direct shortcut from the trigger to the target class, mitigating the shortcut connection issue. We conducted extensive experiments to thoroughly validate the effectiveness of our attacks on downstream detection and segmentation tasks. Additionally, we showcase the potential of our approach in more practical scenarios, including large vision models and 3D object detection in autonomous driving. This paper aims to raise awareness of the potential threats associated with applying PVMs in practical scenarios. Our codes are available at https://github.com/Veee9/Pre-trained-Trojan.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.