不同柱形高度方形旋风分离器内流动现象的研究

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-01-22 DOI:10.1016/j.seppur.2025.131724
Marek Wasilewski, Grzegorz Ligus, Lakhbir Singh Brar
{"title":"不同柱形高度方形旋风分离器内流动现象的研究","authors":"Marek Wasilewski, Grzegorz Ligus, Lakhbir Singh Brar","doi":"10.1016/j.seppur.2025.131724","DOIUrl":null,"url":null,"abstract":"This research investigates the impact of various prismatic heights (PHs) on the performance of square cyclones at three Reynolds numbers, viz. <em>Re</em> = 27626, 37,985 and 48345. We have accounted for seven different PHs, viz. 1.0<em>D</em>, 1.5<em>D</em>, 2.0<em>D</em>, 2.5<em>D</em>, 3.0<em>D</em>, 3.5<em>D</em>, and 4.0<em>D</em> – here, <em>D</em> represents the prismatic section dimension of the square cross-sectional area. Model 2.0<em>D</em> is the reference model used to evaluate relative performance. A high-performance turbulence model large-eddy simulation has been used to calculate the separation efficiency and pressure drop. The assumptions made in the numerical studies were validated using experimental and PIV studies. Considering the latter, solid particles with three different densities viz. 1100, 2100, and 2800 kg/m<sup>3</sup> are analysed. We also present the flow details in the form of variations in the mean and standard deviation values of scalar and vector quantities. It has been observed that with an increase in the PH, given a <em>Re</em> value, there is a marginal variation in pressure drop values, which amounts to a maximum value of less than 5 % at <em>Re</em> = 48345. Compared to the mild variations in pressure losses, the differences in the collection efficiencies are significant but slightly dramatic (in context to the particle density). A maximum enhancement of more than 26 % has been observed for particle density 1100 kg/m<sup>3</sup> at <em>Re</em> = 48345. Conclusive results indicate that model 4.0<em>D</em> outperforms all the variants, and this model works more efficiently, particularly for low-density particles. It was shown that in the case of square cyclones, it may also be important to adapt the geometry of the separator not only to the flow conditions of the fluid phase but also to take into account the properties of the solid phase. In this case, the selection of PHs may be crucial.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"49 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations of the flow phenomena inside square cyclone separators with different prismatic heights\",\"authors\":\"Marek Wasilewski, Grzegorz Ligus, Lakhbir Singh Brar\",\"doi\":\"10.1016/j.seppur.2025.131724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the impact of various prismatic heights (PHs) on the performance of square cyclones at three Reynolds numbers, viz. <em>Re</em> = 27626, 37,985 and 48345. We have accounted for seven different PHs, viz. 1.0<em>D</em>, 1.5<em>D</em>, 2.0<em>D</em>, 2.5<em>D</em>, 3.0<em>D</em>, 3.5<em>D</em>, and 4.0<em>D</em> – here, <em>D</em> represents the prismatic section dimension of the square cross-sectional area. Model 2.0<em>D</em> is the reference model used to evaluate relative performance. A high-performance turbulence model large-eddy simulation has been used to calculate the separation efficiency and pressure drop. The assumptions made in the numerical studies were validated using experimental and PIV studies. Considering the latter, solid particles with three different densities viz. 1100, 2100, and 2800 kg/m<sup>3</sup> are analysed. We also present the flow details in the form of variations in the mean and standard deviation values of scalar and vector quantities. It has been observed that with an increase in the PH, given a <em>Re</em> value, there is a marginal variation in pressure drop values, which amounts to a maximum value of less than 5 % at <em>Re</em> = 48345. Compared to the mild variations in pressure losses, the differences in the collection efficiencies are significant but slightly dramatic (in context to the particle density). A maximum enhancement of more than 26 % has been observed for particle density 1100 kg/m<sup>3</sup> at <em>Re</em> = 48345. Conclusive results indicate that model 4.0<em>D</em> outperforms all the variants, and this model works more efficiently, particularly for low-density particles. It was shown that in the case of square cyclones, it may also be important to adapt the geometry of the separator not only to the flow conditions of the fluid phase but also to take into account the properties of the solid phase. In this case, the selection of PHs may be crucial.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2025.131724\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131724","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了不同棱镜高度(ph)对三个雷诺数下方形旋风性能的影响,即Re = 27626,37,985和48345。我们已经计算了7种不同的ph值,分别是1.0D、1.5D、2.0D、2.5D、3.0D、3.5D和4.0D——这里,D表示方形横截面积的棱柱形截面尺寸。模型2.0D为评价相对性能的参考模型。采用高性能湍流模型大涡模拟计算了分离效率和压降。数值研究中的假设通过实验和PIV研究得到了验证。考虑到后者,分析了三种不同密度的固体颗粒,即1100、2100和2800 kg/m3。我们还以标量和矢量的平均值和标准差值的变化形式呈现了流的细节。已经观察到,随着PH值的增加,给定一个Re值,压降值有一个边际变化,在Re = 48345处,压降值的最大值小于5 %。与压力损失的轻微变化相比,收集效率的差异是显著的,但略有戏剧性(在颗粒密度的背景下)。在Re = 48345处,当颗粒密度为1100 kg/m3时,最大增强幅度超过26 %。结论性结果表明,模型4.0D优于所有变体,并且该模型更有效,特别是对于低密度颗粒。结果表明,在方形旋风分离器的情况下,不仅要使分离器的几何形状适应流体相的流动条件,而且要考虑到固相的性质,这一点也很重要。在这种情况下,ph值的选择可能至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigations of the flow phenomena inside square cyclone separators with different prismatic heights
This research investigates the impact of various prismatic heights (PHs) on the performance of square cyclones at three Reynolds numbers, viz. Re = 27626, 37,985 and 48345. We have accounted for seven different PHs, viz. 1.0D, 1.5D, 2.0D, 2.5D, 3.0D, 3.5D, and 4.0D – here, D represents the prismatic section dimension of the square cross-sectional area. Model 2.0D is the reference model used to evaluate relative performance. A high-performance turbulence model large-eddy simulation has been used to calculate the separation efficiency and pressure drop. The assumptions made in the numerical studies were validated using experimental and PIV studies. Considering the latter, solid particles with three different densities viz. 1100, 2100, and 2800 kg/m3 are analysed. We also present the flow details in the form of variations in the mean and standard deviation values of scalar and vector quantities. It has been observed that with an increase in the PH, given a Re value, there is a marginal variation in pressure drop values, which amounts to a maximum value of less than 5 % at Re = 48345. Compared to the mild variations in pressure losses, the differences in the collection efficiencies are significant but slightly dramatic (in context to the particle density). A maximum enhancement of more than 26 % has been observed for particle density 1100 kg/m3 at Re = 48345. Conclusive results indicate that model 4.0D outperforms all the variants, and this model works more efficiently, particularly for low-density particles. It was shown that in the case of square cyclones, it may also be important to adapt the geometry of the separator not only to the flow conditions of the fluid phase but also to take into account the properties of the solid phase. In this case, the selection of PHs may be crucial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Dual-driven charge transport enabled by S-scheme heterojunction and solid solution in CdS@N-NiCoO photocatalysts for enhanced hydrogen evolution Extracting metallic lithium and separating diffusion pump oil from lithium slag using a novel negative pressure distillation technology Additive promoted supported mixed amines on mesoporous silica for cyclic capture of carbon dioxide A conical array water evaporator with anti-biofouling, salt-rejecting and anti-polyelectrolyte effect for efficient solar energy-driven seawater desalination Permanganate pretreatment Improves the production of short chain fatty acids from waste activated sludge at pH10: Performance and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1