{"title":"农艺实践驱动的氮相关微生物响应","authors":"Yifeng Han, Minghao Lv, Jirui Liu, Shidong He, Wenchong Shi, Mingcong Li, Zheng Gao","doi":"10.1007/s11104-025-07214-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>The significant variability in agricultural ecosystems leads to considerable differences in soil microbial community responses to nitrogen, attributed to the diverse combinations of agronomic practices, such as planting patterns and fertilization strategies.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>There is no doubt that reducing nitrogen fertilizer inputs is a crucial step in minimizing greenhouse gas emissions; however, determining the optimal nitrogen fertilizer inputs for different ecosystems, while maintaining crop yields, remains a significant challenge. The observed differences in microbial community responses to nitrogen appear to provide targeted insights in this regard. We systematically review and discuss the variances in soil microbial responses to nitrogen across different agricultural systems, aiming to assist researchers and farm managers in providing focused references for scaling up agricultural systems.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>From a practical standpoint, targeted support for nitrogen management in various agricultural ecosystems is essential to reduce nitrogen waste, maintain soil health, and curb global warming trends. These factors are closely linked to crop types, management practices, and the local environmental conditions of the agricultural systems. Furthermore, the rational utilization of M genes to assist in regulating the assembly of soil nitrogen, cycling-related microbial communities may serve as an effective approach to achieving precision agriculture and promoting ecosystem sustainability.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agronomic practices-driven response of nitrogen-related microorganisms\",\"authors\":\"Yifeng Han, Minghao Lv, Jirui Liu, Shidong He, Wenchong Shi, Mingcong Li, Zheng Gao\",\"doi\":\"10.1007/s11104-025-07214-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>The significant variability in agricultural ecosystems leads to considerable differences in soil microbial community responses to nitrogen, attributed to the diverse combinations of agronomic practices, such as planting patterns and fertilization strategies.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>There is no doubt that reducing nitrogen fertilizer inputs is a crucial step in minimizing greenhouse gas emissions; however, determining the optimal nitrogen fertilizer inputs for different ecosystems, while maintaining crop yields, remains a significant challenge. The observed differences in microbial community responses to nitrogen appear to provide targeted insights in this regard. We systematically review and discuss the variances in soil microbial responses to nitrogen across different agricultural systems, aiming to assist researchers and farm managers in providing focused references for scaling up agricultural systems.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>From a practical standpoint, targeted support for nitrogen management in various agricultural ecosystems is essential to reduce nitrogen waste, maintain soil health, and curb global warming trends. These factors are closely linked to crop types, management practices, and the local environmental conditions of the agricultural systems. Furthermore, the rational utilization of M genes to assist in regulating the assembly of soil nitrogen, cycling-related microbial communities may serve as an effective approach to achieving precision agriculture and promoting ecosystem sustainability.</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-025-07214-y\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07214-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Agronomic practices-driven response of nitrogen-related microorganisms
Background
The significant variability in agricultural ecosystems leads to considerable differences in soil microbial community responses to nitrogen, attributed to the diverse combinations of agronomic practices, such as planting patterns and fertilization strategies.
Results
There is no doubt that reducing nitrogen fertilizer inputs is a crucial step in minimizing greenhouse gas emissions; however, determining the optimal nitrogen fertilizer inputs for different ecosystems, while maintaining crop yields, remains a significant challenge. The observed differences in microbial community responses to nitrogen appear to provide targeted insights in this regard. We systematically review and discuss the variances in soil microbial responses to nitrogen across different agricultural systems, aiming to assist researchers and farm managers in providing focused references for scaling up agricultural systems.
Conclusion
From a practical standpoint, targeted support for nitrogen management in various agricultural ecosystems is essential to reduce nitrogen waste, maintain soil health, and curb global warming trends. These factors are closely linked to crop types, management practices, and the local environmental conditions of the agricultural systems. Furthermore, the rational utilization of M genes to assist in regulating the assembly of soil nitrogen, cycling-related microbial communities may serve as an effective approach to achieving precision agriculture and promoting ecosystem sustainability.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.