{"title":"基于通用逻辑线路电路的自校准统一电压调频系统设计","authors":"Jiliang Liu;Huidong Zhao;Zhi Li;Kangning Wang;Shushan Qiao","doi":"10.1109/TVLSI.2024.3466132","DOIUrl":null,"url":null,"abstract":"In this brief, a unified voltage frequency regulator (UVFR) system is designed to eliminate the voltage margin induced by process, voltage, and temperature (PVT) variations. The frequency is regulated with voltage by a universal logic line oscillator (ULLO), which can protect the system from timing violations. The length of the ULLO is self-calibrated by a ULL-based time-digital converter (ULL-TDC) and an in situ half-critical path timing detector, where the ULL is designed to track the critical path delay. A fully synthesizable digital low dropout (DLDO) is designed with the ULL-TDC and a proportional differential (PD) circuit for voltage regulation. The proposed system is implemented in an ARM Cortex-M0 microcontroller in 22 nm technology. Simulation results show that the ULL can accurately track the critical path delay with a maximum variation of 3% at 0.6 V and 11.5% at 0.45 V. The UVFR system consumes 13.2–112 uW of power overhead, and eliminates the voltage margin by 22.3%–28% while reducing the power consumption by 35%–42.3%.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 2","pages":"593-597"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Self-Calibrated Unified Voltage-and-Frequency Regulator System Design Based on Universal Logic Line Circuit\",\"authors\":\"Jiliang Liu;Huidong Zhao;Zhi Li;Kangning Wang;Shushan Qiao\",\"doi\":\"10.1109/TVLSI.2024.3466132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief, a unified voltage frequency regulator (UVFR) system is designed to eliminate the voltage margin induced by process, voltage, and temperature (PVT) variations. The frequency is regulated with voltage by a universal logic line oscillator (ULLO), which can protect the system from timing violations. The length of the ULLO is self-calibrated by a ULL-based time-digital converter (ULL-TDC) and an in situ half-critical path timing detector, where the ULL is designed to track the critical path delay. A fully synthesizable digital low dropout (DLDO) is designed with the ULL-TDC and a proportional differential (PD) circuit for voltage regulation. The proposed system is implemented in an ARM Cortex-M0 microcontroller in 22 nm technology. Simulation results show that the ULL can accurately track the critical path delay with a maximum variation of 3% at 0.6 V and 11.5% at 0.45 V. The UVFR system consumes 13.2–112 uW of power overhead, and eliminates the voltage margin by 22.3%–28% while reducing the power consumption by 35%–42.3%.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 2\",\"pages\":\"593-597\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736954/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10736954/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Self-Calibrated Unified Voltage-and-Frequency Regulator System Design Based on Universal Logic Line Circuit
In this brief, a unified voltage frequency regulator (UVFR) system is designed to eliminate the voltage margin induced by process, voltage, and temperature (PVT) variations. The frequency is regulated with voltage by a universal logic line oscillator (ULLO), which can protect the system from timing violations. The length of the ULLO is self-calibrated by a ULL-based time-digital converter (ULL-TDC) and an in situ half-critical path timing detector, where the ULL is designed to track the critical path delay. A fully synthesizable digital low dropout (DLDO) is designed with the ULL-TDC and a proportional differential (PD) circuit for voltage regulation. The proposed system is implemented in an ARM Cortex-M0 microcontroller in 22 nm technology. Simulation results show that the ULL can accurately track the critical path delay with a maximum variation of 3% at 0.6 V and 11.5% at 0.45 V. The UVFR system consumes 13.2–112 uW of power overhead, and eliminates the voltage margin by 22.3%–28% while reducing the power consumption by 35%–42.3%.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.