{"title":"基于异构多核架构的时空注意力模型混合加速训练","authors":"Saiman Dahal;Pratyush Dhingra;Krishu Kumar Thapa;Partha Pratim Pande;Ananth Kalyanaraman","doi":"10.1109/TPDS.2024.3522781","DOIUrl":null,"url":null,"abstract":"Transformer models have become widely popular in numerous applications, and especially for building foundation large language models (LLMs). Recently, there has been a surge in the exploration of transformer-based architectures in non-LLM applications. In particular, the self-attention mechanism within the transformer architecture offers a way to exploit any hidden relations within data, making it widely applicable for a variety of spatio-temporal tasks in scientific computing domains (e.g., weather, traffic, agriculture). Most of these efforts have primarily focused on accelerating the inference phase. However, the computational resources required to train these attention-based models for scientific applications remain a significant challenge to address. Emerging non-volatile memory (NVM)-based processing-in-memory (PIM) architectures can achieve higher performance and better energy efficiency than their GPU-based counterparts. However, the frequent weight updates during training would necessitate write operations to NVM cells, posing a significant barrier for considering stand-alone NVM-based PIM architectures. In this paper, we present <monospace>HpT</monospace>, a new hybrid approach to accelerate the training of attention-based models for scientific applications. Our approach is hybrid at two different layers: at the software layer, our approach dynamically switches from a full-parameter training mode to a lower-parameter training mode by incorporating intrinsic dimensionality; and at the hardware layer, our approach harnesses the combined power of GPUs, resistive random-access memory (ReRAM)-based PIM devices, and systolic arrays. This software-hardware co-design approach is aimed at adaptively reducing both runtime and energy costs during the training phase, without compromising on quality. Experiments on four concrete real-world scientific applications demonstrate that our hybrid approach is able to significantly reduce training time (up to <inline-formula><tex-math>$11.9\\times$</tex-math></inline-formula>) and energy consumption (up to <inline-formula><tex-math>$12.05\\times$</tex-math></inline-formula>), compared to the corresponding full-parameter training executing on only GPUs. Our approach serves as an example for accelerating the training of attention-based models on heterogeneous platforms including ReRAMs.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 3","pages":"407-421"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HpT: Hybrid Acceleration of Spatio-Temporal Attention Model Training on Heterogeneous Manycore Architectures\",\"authors\":\"Saiman Dahal;Pratyush Dhingra;Krishu Kumar Thapa;Partha Pratim Pande;Ananth Kalyanaraman\",\"doi\":\"10.1109/TPDS.2024.3522781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transformer models have become widely popular in numerous applications, and especially for building foundation large language models (LLMs). Recently, there has been a surge in the exploration of transformer-based architectures in non-LLM applications. In particular, the self-attention mechanism within the transformer architecture offers a way to exploit any hidden relations within data, making it widely applicable for a variety of spatio-temporal tasks in scientific computing domains (e.g., weather, traffic, agriculture). Most of these efforts have primarily focused on accelerating the inference phase. However, the computational resources required to train these attention-based models for scientific applications remain a significant challenge to address. Emerging non-volatile memory (NVM)-based processing-in-memory (PIM) architectures can achieve higher performance and better energy efficiency than their GPU-based counterparts. However, the frequent weight updates during training would necessitate write operations to NVM cells, posing a significant barrier for considering stand-alone NVM-based PIM architectures. In this paper, we present <monospace>HpT</monospace>, a new hybrid approach to accelerate the training of attention-based models for scientific applications. Our approach is hybrid at two different layers: at the software layer, our approach dynamically switches from a full-parameter training mode to a lower-parameter training mode by incorporating intrinsic dimensionality; and at the hardware layer, our approach harnesses the combined power of GPUs, resistive random-access memory (ReRAM)-based PIM devices, and systolic arrays. This software-hardware co-design approach is aimed at adaptively reducing both runtime and energy costs during the training phase, without compromising on quality. Experiments on four concrete real-world scientific applications demonstrate that our hybrid approach is able to significantly reduce training time (up to <inline-formula><tex-math>$11.9\\\\times$</tex-math></inline-formula>) and energy consumption (up to <inline-formula><tex-math>$12.05\\\\times$</tex-math></inline-formula>), compared to the corresponding full-parameter training executing on only GPUs. Our approach serves as an example for accelerating the training of attention-based models on heterogeneous platforms including ReRAMs.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 3\",\"pages\":\"407-421\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820024/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820024/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
HpT: Hybrid Acceleration of Spatio-Temporal Attention Model Training on Heterogeneous Manycore Architectures
Transformer models have become widely popular in numerous applications, and especially for building foundation large language models (LLMs). Recently, there has been a surge in the exploration of transformer-based architectures in non-LLM applications. In particular, the self-attention mechanism within the transformer architecture offers a way to exploit any hidden relations within data, making it widely applicable for a variety of spatio-temporal tasks in scientific computing domains (e.g., weather, traffic, agriculture). Most of these efforts have primarily focused on accelerating the inference phase. However, the computational resources required to train these attention-based models for scientific applications remain a significant challenge to address. Emerging non-volatile memory (NVM)-based processing-in-memory (PIM) architectures can achieve higher performance and better energy efficiency than their GPU-based counterparts. However, the frequent weight updates during training would necessitate write operations to NVM cells, posing a significant barrier for considering stand-alone NVM-based PIM architectures. In this paper, we present HpT, a new hybrid approach to accelerate the training of attention-based models for scientific applications. Our approach is hybrid at two different layers: at the software layer, our approach dynamically switches from a full-parameter training mode to a lower-parameter training mode by incorporating intrinsic dimensionality; and at the hardware layer, our approach harnesses the combined power of GPUs, resistive random-access memory (ReRAM)-based PIM devices, and systolic arrays. This software-hardware co-design approach is aimed at adaptively reducing both runtime and energy costs during the training phase, without compromising on quality. Experiments on four concrete real-world scientific applications demonstrate that our hybrid approach is able to significantly reduce training time (up to $11.9\times$) and energy consumption (up to $12.05\times$), compared to the corresponding full-parameter training executing on only GPUs. Our approach serves as an example for accelerating the training of attention-based models on heterogeneous platforms including ReRAMs.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.