直方图:基于直方图的高效水下图像增强变压器

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL IEEE Journal of Oceanic Engineering Pub Date : 2024-11-21 DOI:10.1109/JOE.2024.3474919
Yan-Tsung Peng;Yen-Rong Chen;Guan-Rong Chen;Chun-Jung Liao
{"title":"直方图:基于直方图的高效水下图像增强变压器","authors":"Yan-Tsung Peng;Yen-Rong Chen;Guan-Rong Chen;Chun-Jung Liao","doi":"10.1109/JOE.2024.3474919","DOIUrl":null,"url":null,"abstract":"When taking images underwater, we often find they have low contrast and color distortions since light passing through water suffers from absorption, scattering, and attenuation, making it difficult to see the scene clearly. To address this, we propose an effective model for underwater image enhancement using a histogram-based transformer (Histoformer), learning histogram distributions of high-contrast and color-corrected underwater images to produce the desired histogram to improve the visual quality of underwater images. Furthermore, we integrate the Histoformer with a generative adversarial network for pixel-based quality refinement. Experimental results demonstrate that the proposed model performs favorably against state-of-the-art underwater image restoration and enhancement approaches quantitatively and qualitatively.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 1","pages":"164-177"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histoformer: Histogram-Based Transformer for Efficient Underwater Image Enhancement\",\"authors\":\"Yan-Tsung Peng;Yen-Rong Chen;Guan-Rong Chen;Chun-Jung Liao\",\"doi\":\"10.1109/JOE.2024.3474919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When taking images underwater, we often find they have low contrast and color distortions since light passing through water suffers from absorption, scattering, and attenuation, making it difficult to see the scene clearly. To address this, we propose an effective model for underwater image enhancement using a histogram-based transformer (Histoformer), learning histogram distributions of high-contrast and color-corrected underwater images to produce the desired histogram to improve the visual quality of underwater images. Furthermore, we integrate the Histoformer with a generative adversarial network for pixel-based quality refinement. Experimental results demonstrate that the proposed model performs favorably against state-of-the-art underwater image restoration and enhancement approaches quantitatively and qualitatively.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 1\",\"pages\":\"164-177\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10762843/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10762843/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

当在水下拍摄图像时,我们经常发现它们对比度低,色彩失真,因为穿过水的光受到吸收,散射和衰减,使得很难清楚地看到场景。为了解决这个问题,我们提出了一个有效的水下图像增强模型,使用基于直方图的转换器(Histoformer),学习高对比度和色彩校正水下图像的直方图分布,以产生所需的直方图,以提高水下图像的视觉质量。此外,我们将Histoformer与生成对抗网络相结合,用于基于像素的质量细化。实验结果表明,该模型在定量和定性上都优于当前最先进的水下图像恢复和增强方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Histoformer: Histogram-Based Transformer for Efficient Underwater Image Enhancement
When taking images underwater, we often find they have low contrast and color distortions since light passing through water suffers from absorption, scattering, and attenuation, making it difficult to see the scene clearly. To address this, we propose an effective model for underwater image enhancement using a histogram-based transformer (Histoformer), learning histogram distributions of high-contrast and color-corrected underwater images to produce the desired histogram to improve the visual quality of underwater images. Furthermore, we integrate the Histoformer with a generative adversarial network for pixel-based quality refinement. Experimental results demonstrate that the proposed model performs favorably against state-of-the-art underwater image restoration and enhancement approaches quantitatively and qualitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
期刊最新文献
Table of Contents JOE Call for Papers - Special Issue on Maritime Informatics and Robotics: Advances from the IEEE Symposium on Maritime Informatics & Robotics JOE Call for Papers - Special Issue on the IEEE 2026 AUV Symposium Combined Texture Continuity and Correlation for Sidescan Sonar Heading Distortion Sea Surface Floating Small Target Detection Based on a Priori Feature Distribution and Multiscan Iteration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1